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A Dynamic Programming Model of Energy Storage
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and generation capacity to serve charging loads with relatively high PEV pen-
etration levels. Thus, at least initially, the negative impacts of PEVs may be
at the distribution level.

The distribution system is normally built to accommodate the anticipated
peak demand. This can be inefficient, however, since the system may only
achieve this peak during a handful of hours each year. An alternative is to site
storage on the constrained side of the distribution system. By charging storage
when distribution is unconstrained and discharging when loads are higher, the
distribution system can be downsized. Moreover, such storage can provide
additional value to the utility, system operator (SO), or customers beyond
the distribution benefits. For instance, by operating storage in a dynamic
islanding mode it can provide backup energy to customers if there is a service
outage. Similarly, storage can be used to provide ancillary services (AS) or
to arbitrage diurnal day-ahead or real-time energy price differences. AS are
excess generating capacity that a utility or SO reserves to provide a buffer for
real-time deviations between actual and forecasted energy demand or supply.
Nourai (2007
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V L: penalty for unserved building load [$/kWh]
γ: hourly discount factor

Our model assumes that the storage has a minimum storage level, R̄min.
This accounts for technologies, such as lithium-ion batteries, which suffer ex-
treme cycle-life degradation if the state of charge falls too low. The unitless
ratios, ηc and ηd, reflect efficiency losses from charging and discharging stor-
age, respectively.

P̄ tr is the transformer’s rated power capacity. The transformer can be
operated above this capacity, however, which accelerates transformer aging and
imposes a cost. This accelerated aging is typically estimated using hot-spot or
top-oil temperature models. Susa et al (2005) and Gong et al (2011) present
two examples of such models. These models estimate the effect of operating
the transformer above its rated capacity on its overall lifetime. Combining
this aging effect with an assumed transformer replacement cost gives a cost
for operating the transformer above its rated capacity, which we denote V tr(v).
This function, which we assume to be convex, accrues on an hourly basis and
represents the cost incurred in each hour during which the transformer is
operated above its rated capacity. Allowing the transformer to be operated
above its rated capacity is an added feature of our model, compared to that
developed by Xi et al (2014). V L is the cost penalty for curtailing distribution-
level loads, which are caused by system outages and distribution constraints.
Stored energy can be used, however, to reduce such curtailments.

2.2 Decision Variables

ed
t : energy discharged for sales in hour t [kWh]

ec
t : energy charged into storage in hour t [kWh]

el
t: energy discharged from storage in hour t to serve distribution-level load

[kWh]
lt: distribution-level load met in hour t [kWh]
kt: regulation capacity sold in hour t [kW-h]
vt: amount transformer is overloaded in hour t − 1 [kW]

We also define At =
(

ed
t , ec

t , el
t, lt, kt, vt

)

as a vector of hour-t decision vari-
ables.

2.3 State Variables

xt: total energy in storage at the beginning of hour t [kWh]
pe

t : market price of energy in hour t [$/kWh]
pr

t : market price of regulation in hour t [$/kW-h]
Dt: distribution-level energy demand in hour t [kWh]
It: binary variable indicating if there is a system outage (equals 1) in hour t
δu

t : dispatch-to-contract ratio of regulation-up in hour t − 1
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It+1 = Ît+1 + It,

δu
t+1 = δ̂u

t+1 + δu
t ,

and:

δd
t+1 = δ̂d

t+1 + δd
t .
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Constraints (7) and (8) also define vt+1, the amount that the transformer is
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Algorithm 2 Phase 2 of ASDP Algorithm: Obtain a Near-Optimal Policy
1: Fix x1

2: for t = 1 to T do

3: Observe ωt from continuous distribution and round it to the nearest discrete ω̃t

4: if t > 1 then

5: nu
t ← max{0, δu

t ·kt−1−ηd ·(xt−1− ¯
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modeled minimum and maximum capacity for each week (as a percentage of
R̄nom). Figure 5 further indicates that the batteries’ charging and discharging
efficiencies are temperature-dependent.
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its rated capacity is given by the following convex piecewise-linear function:

V tr(vt) =







































0.68vt, if vt ∈ [0, 0.1P̄ tr),
1.76(vt − 0.1P̄ tr) + 0.68 · 0.1P̄ tr, if vt ∈ [0.1P̄ tr, 0.2P̄ tr),
5.14(vt − 0.2P̄ tr) + 2.44 · 0.1P̄ tr, if vt ∈ [0.2P̄ tr, 0.3P̄ tr),
16.30(vt − 0.3P̄ tr) + 7.58 · 0.1P̄ tr, if vt ∈ [0.3P̄ tr, 0.4P̄ tr),
50.21(vt − 0.4P̄ tr) + 23.88 · 0.1P̄ tr, if vt ∈ [0.4P̄ tr, 0.5P̄ tr),
158.40(vt − 0.5P̄ tr) + 74.09 · 0.1P̄ tr, if vt ∈ [0.5P̄ tr, 0.6P̄ tr),
520.70(vt − 0.6P̄ tr) + 232.49 · 0.1P̄ tr, if vt ∈ [0.6P̄ tr, +∞).

(21)

4.4 Exogenous Random Variables

Although our model and solution algorithm do not require any specific cor-
relation among the exogenous random variables (other than the Markovian

property), we assume in our case study that p̂e
t , p̂r

t , D̂t, Ît, δ̂u
t , and δ̂d

t are

all mutually independent. We further assume that p̂e
t , p̂r

t , D̂t, δ̂u
t , and δ̂d

t are
serially independent over time.

Historical energy and regulation capacity prices show very little correlation.
In 2009 these prices had a correlation of about −0.15. This is because high en-
ergy prices signal less generating capacity being available and higher-cost gen-
eration having to be used to serve the load. High regulation prices signal a lack
of fast-responding generation. Indeed, energy prices tend
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gross regulation up and down energy deployed in real-time. The data do not
show any diurnal or seasonal patterns in the ratios. Thus, we assume that
the distributions are time-invariant. Hypothesis testing suggests that a Gaus-
sian distribution best fits the historical data, which we assume. Maximum-
likelihood estimators of the mean and standard deviation are used.
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and (5). We discretize the vt variables using the breakpoints shown in equa-

tion (21). The distributions of the p̂e
t , δ̂u

t , D̂t, and δ̂d
t random variables are

discretized into five possible outcomes and the distributions of the p̂r
t random

variables into four possible values, using bracket medians. The distribution of
Ît needs no discretization, as it can only take on two values.

These assumptions yield a discrete dynamic program, given by (18), which
can be solved using the dynamic programming algorithm. Moreover, we can
exploit the structure of our problem to further reduce the feasible action space,
over which we must search for an optimal solution at Step 6 of Algorithm 2.
We first note that due to roundtrip efficiency losses, it is suboptimal to simul-
taneously charge and discharge energy. Thus, for all t, ec

t cannot be non-zero
if at least one of ed

t and el
t is and vice versa. Hence, the total number of

combinations that ec
t , ed

t , and el
t can take in a given hour is M2, where:

M =
∣

∣{R̄min, R̄min + 0.5, R̄min + 1.0, · · · , R̄max}
∣

∣ .

Furthermore, due to the high penalty on unserved building loads, the value
of l̃t can be determined by (7) through (10) and the values of It, ẽc

t , ẽd
t , ẽl

t,
k̃t, and ṽt. Specifically, if It = 1, then l̃t = min{D̃t, ẽl

t}. Otherwise, if It = 0
then l̃t = min{D̃t, P̄ tr + ṽt + ẽl

t}. This structure implies that a maximum of
M2 ·|ṽt|·P̄

tr combinations of action variables are feasible and could be optimal
in (18).

4.6 ASDP Algorithm Implementation

Nascimento and Powell (2009) prove that the piecewise-linear approximations
of the F post

t functions, which are estimated in Algorithm 1, converge to the
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battery comes from regulation, and that it provides much more regulation than
arbitrage. This is because regulation is primarily a capacity service resulting
in relatively little energy charging or discharging. This means that this service
tends to incur little cost and comparably high revenues. Although the dispatch-
to-contract ratio in a particular hour can be high (e.g., we find cases of up to
0.35 in the historical PJM data) the regulation-up and -down signals tend
to cancel-out in the long-run. Our simulation has high ratios of up to 0.36,
but the average ratio over the year is much lower at 0.10, which is consistent
with the historical PJM data. Thus, on average, providing regulation results
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Table 1: Upper and lower bounds on optimal SDP objective function value

Bound Value [$] Standard Error [$]

BL 2172.7 18.74
BU 2215.4 22.39
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5.2 Long-Term Distribution Infrastructure Design

Optimizing distribution infrastructure design involves an economic tradeoff be-
tween the upfront transformer upgrade and battery installation capital costs
and the associated stream of revenues and averted costs. These are combined
with an assumed annual discount rate to compute the net present value (NPV)
of different infrastructure designs and to determine an NPV-maximizing de-
ployment. We compute these NPVs over a 20-year period, which is a standard
design life of a distribution-level transformer. Before presenting the results of
this analysis, we detail the cost and revenue assumptions underlying it.

5.2.1 Cost Assumptions

Our cost assumptions are based on typical values reported to us by AEP. The
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Fig. 8: Expected annual battery operating revenues

a larger battery or transformer gives greater losses, since









30 X. Xi and R. Sioshansi

Knittel CR, Roberts MR (2005) An empirical examination of restructured
electricity prices. Energy Economics 27:791–817

Mohseni P, Stevie RG (2009) Electric vehicles: Holy grail or Fool’s gold. In:
Power & Energy Society General Meeting, 2009, Institute of Electrical and
Electronics Engineers, Calgary, AB, pp 1–5

Nascimento JM, Powell WB (2009) An Optimal Approximate Dynamic Pro-
gramming Algorithm for the Energy Dispatch Problem with Grid-Level
Storage, working paper

Nourai A (2007) Installation of the First Distributed Energy Storage System
(DESS) at American Electric Power (AEP). Tech. Rep. SAND2007-3580,
Sandia National Laboratories

Powell WB (2007) Approximate Dynamic Programming: Solving the Curses
of Dimensionality. Wiley-Interscience, Hoboken, New Jersey

Rockafellar RT (1970) Convex Analysis. Princeton University Press, Princeton,
New Jersey

Shapiro A (2003) Inference of statistical bounds for multistage stochastic pro-
gramming problems. Mathematical Methods of Operations Research 58:57–
68

Shrestha GB, Songbo Q (2010) Statistical Characterization of Electricity Price
in Competitive Power Markets. In: 2010 IEEE 11th International Conference
on Probabilistic Methods Applied to Power Systems (PMAPS), Institute of
Electrical and Electronics Engineers, Singapore

Sioshansi R, Denholm P (2010) The value of plug-in hybrid electric vehicles
as grid resources. The Energy Journal 31:1–23

Sioshansi R, Denholm P, Jenkin T, Weiss J (2009) Estimating the Value of
Electricity Storage in PJM: Arbitrage and Some Welfare Effects. Energy
Economics 31:269–277

Susa D, Lehtonen M, Nordman H (2005) Dynamic Thermal Modelling of Power
Transformers. IEEE Transactions on Power Delivery 20:197–204
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