A Dynamic Programming Model of Energy Storage

and g n ration capacity to s rv charging loads with $r \perp a$ tiv $\perp y$ high PE^V p n tration levels. Thus, at least initially, the negative impacts of PE \leq may be at the distribution $\mid {\bf v} \mid$

h distribution system is normally built to accommodate the anticipated peak and his can be interesting the system may only achive this peak during a handful of hours each year. An alternative is to site storage on the constrained side of the distribution system. By charging storage wh n distribution is unconstrained and discharging when loads are higher, the distribution system can be downsized. Moreover, such storage can provide additional value to the utility system operator $\int O$ or customers by yond the distribution b n fts. For instance, by operating storage in a dynamic is anding od it can provid backup n rgy to customers if there is a service outage. i i at y storage can be used to provide ancillary services (AS) or to arbitrage diurnal-day ahead or real-time energy price differences. A area xc ss g n rating capacity that a utility or O r s rv s to provid a bu r for realting deviations between actual and for casted nergy demand or supply. [Nourai](#page-29-0) α discuss s a \sim MW distributed sodium-sulfur battery used by A rican Electric Power (AEP) to relieve a distribution-level transformer in st frginia

 $\frac{1}{\pi}$ sing storage for utiple applications presents operatio

V^{\perp} p naty for uns rv d building load \bullet h hour y discount factor

Our odl assumes that the storage has a minimum storage level, R^{min} his accounts for technologies, such as lithium-ion batteries, which sugfer extreme cycle-life degradation if the state of charge falls too low. In unit ss ratios \cdot and \cdot reflected reflection charging and discharging stor ag r sp ctiv $\forall y$

P^{tr} is the transformer's rated power capacity. In transformer can be op rat d above this capacity however, which accelerates transformer aging and i possa cost. his accelerated aging is typically estimated using hot-spot or top oit pratured is usa tal γ prand Gong tal γ respectively two xa p s of such od/s h s od/s stimate the et of operating the transformer above its rated capacity on its overall lifetime. Combining this aging et with an assumed transformer replacement cost gives a cost for operating the transformer above its rated capacity, which we denote $V^{\text{tr}}(V)$. his function, which we assume to be convex, accrues on an hourly basis and r pr s nts the cost incurred in each hour during which the transformer is op rat d above its rated capacity. Allowing the transformer to be operated above its rated capacity is an added feature of our $\cot \theta$ of $\cot \theta$ compared to that d v op d by Xi t a γ \sim V^{\perp} is the cost penalty for curtailing distribution- \Box v \Box loads, which are caused by system outages and distribution constraints. tord n rgy can bused how v r to r due such curtains.

 2.2 D cision ariables

- e d t n rgy discharged for sales in hour t
- e_t n rgy charged into storage in hour t
- e_t^{\prime} **i** energy discharged from storage in hour **t** to serve distribution. $v \cup \text{oad}$ h
- l_t distribution violad t in hour
- k_t r gu ation capacity sold in hour $t \rightarrow h$
- v_t : a ount transformer is overloaded in hour $t 1$

a so d^fn A_t ($e_t^d, e_t^c, e_t^l, l_t, k_t, v_t$) as a v ctor of hour t d cision variab s

 tat $\overrightarrow{\text{ariah}}$ s Ω

- x_t total n rgy in storage at the beginning of hour t
- p^e ar t price of n rgy in hour t
- p_t
- ar t price of r gu ation in hour t
istribution \cup \cup n rev d and in hour t D_t distribution $|v|$ n rgy demand in hour t
- I_t binary variable indicating if the r is a system outage (quals in hour t
- u dispatch to contract ratio of r gu ation up in hour $t 1$

 $\mathbf{I}_{\mathbf{t}+1}$ \mathbf{I}_{t+1} I_t , $\begin{array}{c} u \\ t+1 \end{array}$ $\begin{array}{c} \mathtt{u} \\ \mathtt{t} + 1 \end{array}$ $\frac{u}{t}$, $\begin{array}{c} \mathsf{d} \\ \mathsf{t} + 1 \end{array}$ $\begin{array}{cc} \mathsf{d} & \mathsf{d} \\ \mathsf{t} + 1 & \mathsf{t} \end{array}.$

and

Constraints [\(](#page-5-1) and (also definity v_{t+1} the amount that the transform r is op rating abov its rat d capacity

A	or t ₁ r ₂ - Phas ⁻ of A DP A gorith l. I. Intilalize:
- Discretize a _t , t, x _t ^{post}	
- Intilalize m _t († _t)	
- Fix x	
- Intilalize m _t († _t)	
3: Randomly generate a sample path, { t} _t T_t , from the continuous distribution	
4: Round the continuous sample path to the nearest discretized sample path, {⁻t} _t T_t	
5: for t = 1 to T - 1 do	
(a _t , y _t) ∈ arg max { $F_t^*(x_t, \tau_t, m_t^1 - (\tau_t)) a_t \in A_{S_t t'}(19), (20)$	
7: Without loss of generality, suppose posst	
8: n _t ← max{0, "t _t · k _t → d (x _t → R ⁰¹) k _t ← max{0, "t _t · k _t → d (x _t → R ⁰¹) k _t ← c ((t _t · k _t → R _t) (c _t → R _t) k _t ← c ((t _t · k _t → R _t) (c _t → R _t) k _t ← c ((t _t · k _t → R _t) (c _t → R _t) k _t ← c ((t _t · k _t → R _t) (c _t → R _t) k _t ← r, m _t → (r _t) → (t _t → R _t) 	

16: **end for**
17: x_t \leftarrow 1 17: \mathbf{x}_t ← $\mathbf{f}^{\text{post}}(\mathbf{x}_t, \tilde{\mathbf{a}}_t)$ 51992Td $[(\cdot)$ -68.5805(~)4.280827758Tf 8.63984-5.98473]T /R2087.97011Tf7011Tf 5.640238.8i/R2107.9701- 121.0796
 $\begin{array}{r} \text{#.3597T} \\ \text{#.3597T} \end{array}$ /R201-70Td $[(\cdot)$ 105(0217d_[(()-68.5805(~)4.280827758Tf 8.63984-5.98473]T /R2087.97011Tf7011Tf 5.640238.8i/R2107.9701_ 121.0796 في ا

2: for $t = 1$ to T do
3: Observe t from 3: Observe \mathbf{t} from continuous distribution and round it to the nearest discrete \mathbf{t}

4: if $t > 1$ then

5: n_t^u ← max{0, $\frac{u}{t} \cdot k_{t-} - \frac{d}{t} \cdot (x_{t-} - \frac{d}{t})$

od inimum and aximum capacity for ach week (as a percentage of Rnom Figur pranther indicat s that the batt ris charging and discharging $\,$ ci
nci s ar $\,$ t $\,$ p $\,$ ratur $\,$ d
p $\,$ nd $\,$ nt

its rat d capacity is giv n by the following convex piecewise-linear function

$$
V^{tr} \wedge_t \qquad \begin{cases} \cdot & v_t, \\ \cdot & \hspace{-0.2cm} \uparrow v_t - \cdot P^{tr} \\ \cdot & \hspace{-0.2cm} \uparrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \uparrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \uparrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \uparrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \uparrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \uparrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \uparrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \uparrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \uparrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \uparrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \downarrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \downarrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \downarrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \downarrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \downarrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \downarrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \downarrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \downarrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \downarrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \downarrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \downarrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \downarrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \downarrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \downarrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \downarrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \downarrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \downarrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm} \downarrow v_t - \cdot P^{tr}, \\ \cdot & \hspace{-0.2cm
$$

$\sqrt{4}$ Exog nous Random Variables

A though our odl and solution algorith do not require any specific corrtation among the exogenous random variables (other than the Markovian property we assume in our case study that p_t^e p_t^r D_t I_t $\frac{u}{t}$ and $\frac{d}{t}$ are all utually ind p nd nt \bullet furth r assume that p_t^e p_t^r D_t $\frac{u}{t}$ and $\frac{d}{t}$ are s rially ind p nd nt ov r time.

Historica energy and regulation capacity prices show very little correlation. In 2009 these prices had a correlation of about $-$. In this is because high enrgy prices signal less generating capacity being available and higher-cost generation ration having to be used to serve the load. High regulation prices signal a lack of fast r sponding g n ration. Ind d n rgy prices tend to peak idding capAA \cdot

i01 T771(c)-1.22528(e)-15.8

gross r guation up and down n rgy d p oy d in r a tich data do not show any diurnal or s asonal patt rms in the ratios. \quad hus, we assume that the distributions are tide-invariant. Hypothesis testing suggests that a Gaussian distribution best fits the historical data which we assume. Maximum- \exists i \bot ihood sti \bot ators of the mean and standard deviation are used.

and \oint discretize the v_t variables using the breakpoints shown in quation γ h distributions of the p_t^e u D_t and γ random variables are discretized into \int_{V} possible outcomes and the distributions of the p_t^r random variables into four possible value is using bracket medians. The distribution of \mathbf{I}_{t} n ds no discretization as it can only take on two values.

h s assumptions yield a discrete dynamic program, given by \int which can b solved using the dynamic programming algorithm. Moreover, we can xpoit the structure of our problem to further reduce the feasible action space Δ over which we must search for an optimal solution at $\pm p$ of Algorithm [2](#page-13-0) $\frac{d}{dx}$ first not that due to roundtrip ei ncyloss s it is suboptimal to simultan ously charge and discharge energy. hus for all $t e_t^c$ cannot be non-z ro if at last one of e_t^d and e_t^l is and vice versa. Hence, the total number of co binations that e_t^c e_t^d and e_t^l can ta in a giv n hour is M^2 wh r

$$
M \quad \left| \{ R^{\text{min}}, R^{\text{min}} \quad \mathbb{P} \} R^{\text{min}} \quad \text{`., \dots,} R^{\text{max}} \} \right|.
$$

Furth r or du to the high penalty on unserved building loads the value of l_t can be dt r in d by ℓ through ℓ and the values of I_t or e_t^c e_t^d e_t^l
 k_t and v_t p citcally if I_t then l_t in $\{D_t, e_t^l\}$ Otherwise if I_t th n \mathbf{l}_t in $\{\mathbf{D}_t, \mathbf{P}^{tr} \quad \mathbf{v}_t \quad \mathbf{e}_t^l\}$ his structur i p i s that a axi u of M^2 $|\mathbf{v}_t| \cdot \mathbf{P}$ ^{tr} co binations of action variables are feasible and could be optimal in ℓ

 \angle A DP Algorith I p ntation

Nascington and Powell χ prove that the piecewise-linear approximations of the $\mathbf{F}_t^{\text{post}}$ functions, which are still at d in Algorith \bullet converge to the

batt ry comes from regulation, and that it provides uch or regulation than arbitrage. This is because regulation is primarily a capacity service resulting in $r \downarrow$ ativ \downarrow y \downarrow itt is n rgy charging or discharging. This means that this service t nds to incur litt cost and comparably high revenues. Although the dispatchto contract ratio in a particular hour can be high $\{e\ g\ \mathbf{w}\ \}_{\mathbf{n}\mathbf{d}}^{\mathbf{n}}$ cases of up to

p^hm the historical PJM data the regulation up and down signals tend to cancel out in the long-run. Our simulation has high ratios of up to but the average ratio over the year is much lower at \bullet which is consistent with the historical PJM data. hus on average providing regulation results

ab $\quad \bullet$ $\quad \bullet$ PP $\,$ r and $\,$ ow $\,$ r bounds on optimal $\,$ DP objective function value

Bound	Value [\$]	Standard Error [\$]
B ₁	2172.7	18.74
B_{U}	2215.4	22.39

\mathbb{P} Long r Distribution Infrastructur D sign

Opti izing distribution infrastructur d sign invo v s an cono ic trad o b tw n th upfront transfor r upgrad and batt ry instal ation capital costs and th associat d str a $-$ of r v nu s and av rt d $costs - h$ s $-$ ar $-$ co $-$ bin d of di rut infrastructur d signs and to d t r in an NP \checkmark axi izing d \overrightarrow{p} over \overrightarrow{p} to but the NP sov r a y ar p riod which is a standard d sign^{\int} if of a distribution \int v \int transfor r B for pr s nting th r su ts of this ana ysis w d tai th cost and r v nu assu ptions und r ying it

5.2. Cost Assumptions

Fig. Exp ct d annual batt ry op rating r v nu s

a \mid arg \mid r batt \mid ry or transfor \mid r giv \mid gr \mid at \mid r \mid oss \mid s, sinc

- Knitt CR, Roberts MR γ p An epirical examination of r structured electricity prices. En rgy Economics 2
- Mohs ni P t vi RG_2 ⁰ E ctric v hid s Holy grail or Fool's gold. In: Powr Enrgy ocity Gnra Meting? Institute of Electrical and Electronics Engineers, Calgary, AB, pp ⁺ p
- Nasci nto JM, Pow \mathbb{R}^2 B \mathcal{A} An Optimal Approximate Dynamic Programming Algorithm for the Energy Dispatch Problem with Grid-Level torag wor ing pap r
- Nourai A χ Installation of the First Distributed Energy torage ystem DE at A strict Power (AEP ch R p AND n (DE at A rican Electric Power (AEP). Ch Rep. AND andia National Laboratories
Powell $\overrightarrow{B_1}$ Approxi at
- Approximate Dynamic Programming of ving the Curses of Dimensionality. Wilhelm is ynther science. Hoboken, New Jersey
- Roc af H ar R \int Conv x Analysis. Princ ton Im is expected University Press, Princeton, N w J rs y
- hapiro $A \chi$ Infr nc of statistical bounds for ultistage stochastic programming problems. Mathematical Methods of Operations Research \mathbb{R} .
- hr stha GB ongbo Q γ ⁺ tatistical Characterization of Electricity Price in Competitive Power Markets. In: \bullet IEEE^{**}th International Conference on Probabilistic M thods Applid to Power yst s (PMAP Institute of E ctrical and E ctronics Engineers, Singapore
- ioshansi R, D nholm P χ ² h value of plug-in hybrid ψ ctric v hid s as grid r sources. In Energy Journal 31:1–23
- ioshansi R, D nholm P, J n in T, iss J χ Estimating the Value of oshansi R D nho P J n in Siss J χ Esti ating the S u of E ctricity torage in PJM: Arbitrage and o Econo ics $\dot{2}$ 2
- usa D, L hton n M, Nord an H γ properties Thermal Modelling of Power Transformers. IEEE Transactions on Power Delivery 2007
on ic J K pton γ and γ and γ and γ is of the central delivery bid
- $T = \frac{\text{sing}}{\text{surc s}}$ is of electric drive vehicles for grid support. Journal of Power ources
- Xi X, Sioshansi R, Marano $\mathcal{L}_{\mathcal{A}}$ \sim A stochastic Dynamic Programming Mod ℓ for Co-opti ization of Distribut d Energy torage. Energy ystems Forthco ing