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The paper develops a simulation-optimization model that determines where to locate electric vehicle chargers
to maximize their use by privately owned electric vehicles. Applying this model to the central-Ohio region,
we demonstrate that a combination of level-one and -two chargers is preferable to level-two chargers only.
We further explore interactions between the optimization criterion used and the budget available. We finally
show that although the optimal location is sensitive to the specific optimization criterion considered, overall
service levels are less sensitive to the optimization strategy.
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An important electric charging infrastructure design question focuses on what charging technology to
use. There are currently three major EV charging technologies available. Level-one charging uses a standard
wall outlet, providing a 110 VV/15 A connection. Typical EV batteries, which range between 16 and 25 kWh,
can take 12 to 18 hours to fully charge using such a connection. Level-two charging uses a larger ‘appliance
circuit,” which is typically rated at 220 V and between 15 and 30 A. DC fast charging uses high-voltage
(often 400 to 500 V) direct current and can fully charge a typical EV battery in as little as 30 minutes.
Since DC fast charging requires special equipment, it is not expected to be deployed in standard residential
settings.

Another challenge is where to locate charging stations. Charging station location belongs to the general
class of refueling infrastructure problems, however most of the existing approaches to solving them are
more appropriate for ‘fast’ refueling. Indeed, most works typically neglect fueling times and assume that
all customers that arrive at or pass by a station are served. While valid for gasoline and hydrogen fueling,
this assumption is inappropriate for slower level-one and -two charging. A vehicle that arrives or passes
through a charging station may be ‘rejected’ if there are no free chargers and the driver is unwilling to wait.
Moreover, a vehicle may only be partially charged as the driver may be unwilling to wait for a full charge.
Thus, it is more appropriate to focus on EV arrival and departure times from parking lots, since this is when
slow charging can be reasonably done. Existing models do not determine the number or type of chargers
to install at each location, only where to place stations. This question is important for EVs because the
number of chargers directly a ects how many vehicles are served (due to charger occupancy). Moreover, the
number of chargers determines infrastructure deployment cost. Upchurch et al. (2009) refine these typical
assumptions by restricting the number of vehicles that a station can serve. Thus, multiple stations might be
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required at a single location to capture a large flow. Their model assumes, however, that every station and
charger has a fixed flow-capture capacity. That is, the marginal service level is independent of the vehicle
arrival pattern. Furthermore, most existing studies use conventional vehicle flows or gasoline sales data to
estimate EV vehicle flows, with the underlying assumption that EV adoption rates are uniform within a
region.

This paper develops a charging infrastructure location model that maximizes EV service levels. It is
explicitly designed to model slow charging technologies (e.g., levels one and two) and accounts for the
impact of EV driving patterns and the chargers installed on flows that can be served.
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Our modeling approach assumes a fixed study region, which is divided into sub-regions that can represent
specific vehicle origins and destinations, or aggregations of such locations. Our model assumes that tour
record data for vehicle trips between the sub-regions are available. At a minimum, these data should identify
the times during which vehicle trips occur. In our case study we also make use of more detailed data that
associate driving trips with specific vehicles, allowing co



The EVs that successfully charge and the amount of energy recharged at a candidate charging station
location depend on vehicle arrival and departure patterns, the chargers installed at the location, and charging
behavior. We capture these e ects by simulating EV arrivals, departures, and charging at each candidate
location, using a simulation model with the structure illustrated in Figure 1. This model estimates the EVs
that successfully charge and the amount of energy recharged in EV batteries as a function of the chargers
installed at each location.
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Figure 1: Schematic of charging model at a single candidate location with h; chargers.

The model first determines when EV arrivals and departures occur at each candidate location and uses
two simple rules to determine how many of the EVs that arrive charge. The first is that an EV charges if and
only if there is an unoccupied charger available upon arrival. If so, the EV occupies the charger and charges
for the entire parking duration. Otherwise, the EV parks at a spot without a charger and does not charge.
We also later examine cases in which some of these rules are relaxed. Because vehicle charging decisions
at each location are independent of the chargers installed elsewhere, we simulate each location individually.
We let fj(h;j) denote the number of EVs that are simulated as successfully charging at candidate location j
if hj chargers are installed.

We use the same simulation model to estimate the battery energy recharged in EV batteries that use a
public charger. To do so, we compute the charge level of each EV battery upon arrival. If we let V denote
the set of EVs and N j the times vehicle v arrives at location j, our model computes this charge level as:

Cvjn=max{c,,cl —nv-dvjnt, Vv V,j JIn=1,...,Nyj. (D)

The ¢; and ¢ terms denote the minimum and maximum charge levels, respectively, within which the
battery operates. The n, term is EV v’s average e ciency, measured in kWh of battery energy consumed
per km driven. The dy j,n term is the cumulative distance driven by EV v upon the nth arrival at location
J, including any intermediate stops en route.

Equation (1) assumes that each EV battery is fully charged (i.e., has ¢ kWh of energy stored) at
the beginning of the study period. It also assumes that the charge level of each EV depends only on
the cumulative distance upon arrival. This second assumption ignores the possibility of charging in other
locations, and allows us to simulate EV charging at each location independently. Otherwise, one would have
to simulate all of the candidate locations jointly to account for intermediate charging elsewhere. We use a
more detailed simulation model to examine whether this independence assumption a ects the results.

We compute the amount of energy recharged in the battery as:

eV’j’n = min{C\T - CV’j’n, tV’j’n ' rj}, V V,j \], n= 1, sy NV,j! (2)

if the vehicle recharges, where ty jn is the parking duration, and rj is the net of e ciency losses charger



We can simulate charging with di erent values for rj, which would represent replacing all of the chargers
with a di erent technology. We make this homogeneity assumption because if di erent chargers types are
installed, an additional assumption is required about what






Since the level-one and -two chargers that we focus on require multiple hours to fully recharge an EV,
public chargers must be at locations with long parking times. Moreover, for a charging station to be viable,
it needs a su cient number of expected EV arrivals to make the investment cost-e ective. For these reasons,
we model the parking lots of workplaces, universities, and retail shopping locations as candidate stations.
Trips to such locations typically entail extended stays. Moreover, each TAZ has few workplaces, universities,
and retail shopping locations, compared to the possible destinations for other trip types. For instance, an
EV traveling to visit a friend has thousands of possible destinations within a TAZ.

The tour record data specify each trip’s destination TAZ and purpose, and we use these data to assign
EVs to candidate locations upon arrival. A TAZ can, however, contain multiple locations of a single type
(e.g., multiple workplaces). We use a set of heuristic rules to assign EV arrivals to the di erent potential
locations. For retail shopping locations, we model each individual shopping center as a separate candidate
location and assume that EVs are equally likely to go to any of these shopping centers within a TAZ.

We assume that each employer that is located in a TAZ that is outside of downtown Columbus has
dedicated parking spaces for its employees. We model the parking lot of each of these employers as a
separate candidate location. We randomly allocate EVs that arrive to a TAZ for work to the di erent
candidate work locations in proportion to the employment size of the workplaces. Due to restricted land
availability, employers in downtown Columbus are assumed to use shared public parking garages. We model
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To simulate expected service levels with di erent numbers of chargers we conduct 500 replications of the



Table 2: Charging Stations and Chargers Built at Location Types Under Energy-Maximization Optimization Criterion
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Table 4: Expected Daily Energy Charged Estimates Provided by Optimization and Simulation Models




Table 6: Charging Stations and Chargers Built at Location Types Under EV-Maximization Optimization Criterion if Only
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