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ited in that they do not fully account for the uncertain interactions between
providing energy and AS.

The effects of price and system uncertainty are also often neglected in
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3.3 State Variables

xt: total energy in storage at the beginning of hour t [kWh]
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3.4 Exogenous Variables

We assume that the variables pe
t , pu

t , pd
t , Dt, It, δu

t , and δd
t evolve randomly

and independently of any of the decision variables, but may be dependent on
one another. We define p̂e

t , p̂u
t , p̂d

t , D̂t, Ît, δ̂u
t , and δ̂d

t as exogenous random
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more energy in net to the SO). Equation (2) defines the maximum amount of
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Constraints (6), (7), and (8) together force the building load to be either
served by the battery or left unserved in any time period with an outage. We
let As denote the set of decision vectors, a, that are feasible in constraints (3)
through (10) when the system is in the state s.

3.7 Objective Function

The net profit earned in hour t is given by:

Ct(St, at) = pe
t (e
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the solution. The pseudocode in Algorithm 1 summarizes the approximation
algorithm that we use to find near-optimal solutions to our SDP. Steps 1 and 2
represent the first phase of the algorithm, in which the SDP is discretized and
the resulting DSDP is solved exactly using backward induction. The second
phase of the algorithm works by iterating through the hours of the optimiza-
tion horizon. In each hour, the exogenous variables, Wt, are first observed
(step 5). Then the amount of unserved regulation energy in hour t − 1 is up-
dated, based on the actual hour-(t−1) dispatch-to-contract ratio (step 7) and
the resulting energy level of the battery is determined (step 8). Finally, the
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resulting objective function value from using such a policy provides a statis-
tical lower bound on the optimal value of the true SDP [29]. One of the lower
bounds that we compute is found by randomly generating sample paths, ω, of
the exogenous random variables, W , and using the approximation algorithm,
outlined in Section 4.1, to derive a feasible policy. Because the approxima-
tion algorithm assumes that the hour s > t exogenous random variables are
unknown when hour-t
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Algorithm 2 Backcasting Heuristic Pseudocode
1: Let x1 ← R {assume battery starts empty}
2: for t = 1 to
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We generate and solve 1,000 of these stochastic programs in order to compute
a standard error for the upper bound.

Our other set of upper bounds is generated using a sample path averaging
technique. This bound is computed by randomly generating sample paths of
the exogenous random variables. For each sample path, ωi, of exogenous state
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also fit a log-normal distribution, which we assume. In order to capture diur-
nal energy and regulation price patterns, we allow for different location and
scale parameters in the log-normal distributions for each of the 24 hours of
the day. We fit these parameters using least-square estimation based on price
data from the PJM market in the summer of 2009.

Seppala [28] examines the statistical properties of the electricity demand
of residential homes. He compares several parametrized distribution functions
and finds that a log-normal distribution provides the best fit. Thus, we assume
that the building demand has a log-normal distribution and allow the location
and scale parameters to vary in each of the 24 hours of the day. We fit these
parameters using least-square estimation based on historical residential load
data for the summer of 2009 provided by AEP for a set of its customers in
Ohio. The loads correspond to a home that is approximately 200 m2 (2200 ft2)
in size. Although there is a relationship between energy prices and loads, we
are modeling a single building which has only a marginal effect on the system.
Moreover, since we allow the distribution of the hourly prices and loads to
vary, this captures any coincidence in energy prices and building demand.

The distributions of the dispatch-to-contract ratios for regulation up and
down are estimated using least-square estimation based on historical PJM
data from the summer of 2009. These data specify the amount of regulation
capacity reserved in each hour and the amount of regulation energy deployed
in real-time. The data do not show any diurnal patterns in the ratios. As such,
we assume that the distributions are time-invariant. Hypothesis testing shows
that a Gaussian distribution best fits the historical data, which we use in our
case study.

A number of approaches are used to model power system reliability, with
Markov-based models being the most common. The mechanics of component
failure and repair suggest that power system failure follows a Markov process
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Table 2 Discretization of action variables in approximation algorithm.

Variable Number of Discretized Values

ẽd
t 21

ẽc
t 21

ẽl
t 21

l̃t 21

k̃t = k̃u
t = k̃d

t 8
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Fig. 2 Starting storage level of battery in arbitrage-only and arbitrage and backup-energy
cases.

up to 0.35 in the historical PJM data—the regulation-up and -down signals
tend to cancel out in the long run. Our simulation has high ratios of up to 0.30,
but the average ratio over the week is much lower at -0.06, which is consistent
with the historical PJM data. Thus, on average, providing regulation results
in small net charging of the battery. This use of the battery reduces arbitrage
profits even further compared to the other two cases—the battery earns $1.25
over the course of the week when regulation services are allowed—but the
regulation profits of $23.90 more than compensate for this.
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6.5 Solution Quality

Table



26 X. Xi et al.





28 X. Xi et al.

take. We can then define two sets of auxiliary variables, zζ,j
t+1

and vζ,j
t+1

, where ζ ∈ here
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