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Abstract We compare two types of uniform-price auction formats commonly used
in wholesale electricity markets—centrally committed andself-committed markets.
Auctions in both markets are conducted by an independent system operator that col-
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1 Introduction

Wholesale electricity markets facilitate the trade of electricity across a system of
transmission lines. Such markets often use uniform-price auctions to determine the
price of electricity, and the generators that submit the lowest bids, or equivalently
offer to produce electricity at the lowest price, are selected to produce electricity. The
two key outcomes of the auction process are generator commitment (which gener-
ators startup), and generator dispatch (the amount of electricity each generator pro-
duces). Independent system operators (SOs) conduct the uniform-price auctions re-
peatedly throughout the day.

A debate exists as to which entity, the SO or the generators themselves, should
make these decisions. In centrally committed markets, generators submit two-part
bids, subject to offer caps, and the SO makes the commitment and dispatch decisions
and guarantees that each generator recovers the startup costs stated in its energy offer.
This guarantee is made through a make-whole payment, which is a supplemental pay-
ment given to a generator for any deficit between its as-bid cost and energy payments.
In a self-committed market each generator makes its own commitment decision and
submits a single-part bid for energy, also subject to an offer cap, and must incorporate
its startup costs into this bid.1

An unresolved issue in wholesale electricity market designand regulation is what
equilibrium bidding behavior, the total cost of electricity service, and system effi-
ciency would be under central and self commitment. This design question is impor-
tant, given the considerable size of the markets.2 The revenues in these markets also
have significant implications for investment in new generation capacity, which deter-
mines the future electricity costs. The debate over the two market designs centers on
the tradeoff between efficient dispatch and commitment, andgenerator incentives to
truthfully reveal startup and energy costs. [Ruff (1994),Hogan (1994),Hogan (1995),
Hunt (2002)] support centrally committed markets because they give theSO, which
has the best information about the electric system as a whole, the authority to make
both commitment and dispatch decisions. However, [Oren and Ross (2005)] show
that generators can have incentives to misstate their coststo increase profit if the
SO collects multi-part bids. Moreover, [Johnson et al (1997),Sioshansi et al (2008)]
claim that incentive compatibility issues in a centrally committed market can be fur-
ther exacerbated if the SO must rely on suboptimal solutionsto its unit commitment
model. As such, [Wilson (1997),Elmaghraby and Oren (1999)] suggest that commit-
ment decisions are ultimately more efficient in self-committed markets.

Despite the various claims about the two market designs, their incentive proper-
ties have not been directly compared. To this end, we developa single-period sym-
metric duopoly model of two markets: a centrally committed market with two-part
offers (energy and startup); and a self-committed market with one-part offers (energy
only). By analyzing the market as a uniform-price auction with system-wide caps on

1 Some electricity markets operate as a hybrid between the twodesigns highlighted here. For instance,
the New York ISO incorporates some non-convex costs, such asstartup costs, into the energy price.

2 According to their 2007 Annual Reports, the sum of wholesaletransactions in 2007 were: $30.5 billion
in PJM Interconnection, $9.5 billion in New York ISO, $10 billion in ISO New England, and $1.9 billion
in ERCOT.
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each bid element, we are able to characterize Nash equilibria in each market. We fur-
ther derive conditions on the offer caps in the two markets that will yield expected
cost equivalence between the two market designs. We also usea numerical example
to demonstrate and compare the nature of the equilibria of the two markets. The re-
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If l ≤ K only one generator needs to be committed and dispatched to serve load,
which will be the one with the bid that producesl MWh at lowest total cost. The
expected quantity sold by generatori is thus given by:

qc
i (ωi ,ω j , l) =







min{l ,K}, if σi + lεi < σ j + lε j andl ≤ K;
1
2 min{l ,K}, if σi + lεi = σ j + lε j andl ≤ K;
0, if σi + lεi > σ j + lε j andl ≤ K;

and the uniform price of energy is set based on theε of the generator that is committed
and dispatched. We assume that ties are broken with equal probability. Conversely if
l > K, both generators must be committed and dispatched and the quantity sold by the
generators will be based on energy cost only. Thus generatori’s expected production
is:

qc
i (ωi ,ω j , l) =







K, if εi < ε j andl > K;
1
2 l , if εi = ε j andl > K;
l −K, if εi > ε j andl > K;

and the uniform energy price isp = max{εi ,ε j}.
In both cases, the generators receive energy payments,p ·qc

i (ωi ,ω j , l). However,
the generators have non-convex costs due to their startup cost, so these energy pay-
ments alone may be confiscatory. The only information the SO has about the costs of
the generators is their ‘as-bid’ costs inω



Towards Equilibrium Offers in Unit Commitment Auctions with Nonconvex Costs 5

non-negative and that there is a cap,δ ∗, below which the bids must be. Given the
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Proof Whenl ≤ K the unique generator will be dispatched to serve the entire load,l ,
and the uniform price for energy isp = εU . Since the startup cost in its offer is non-
negative,σU ≥ 0, the unique generator’s surplus from energy payments according to
as-bid costs isεU l − (εU l + σU) ≤ 0. Thus the make-whole payment will beWU =
max{0,σU + l(εU −εU )} = σU . Hence, the unique generator’s total payment isTU =
εU l + σU .

Whenl > K the marginal generator will be dispatched to serve(l −K) units of the
load and the uniform price isp = εM. Again, sinceσM ≥ 0, the marginal generator’s
as-bid surplus from energy payments will be non-positive, thus the total payments
will be the sum of energy and make-whole payment, henceTM = εM(l −K)+ σM,
where the make-whole payment isWM = σM.

Moreover, because of the make-whole provision, the SO will ensure the infra-
marginal generator’s as-bid surplus is max{(εM −εI )K−σI ,0}. If max{(εM −εI )K−
σI ,0} = (εM − εI )K −σI , thenεMK ≥ εI K + σI and the total payment to the infra-
marginal generator is simply the energy payment,εMK, because the energy payment
alone is sufficient to cover the inframarginal generator’s (as-bid) startup and variable
operating costs. Otherwise, if max{(εM − εI )K −σI ,0} = 0 thenεMK < εI K + σI ,
and the total payment to the inframarginal generator is:

TI = pK+WI

= εMK +max{0,σI +K(εI − εM)}

= εI K + σI ,

which is the desired expression.

Having characterized generator payments under the centrally committed market,
we now prove the following result, which gives the set of Nashequilibria when only
one of the generators is needed to serve the load.

Proposition 1 If l ≤ K, the unique set of pure-strategy Nash equilibria of the cen-
trally committed market consists of offers such thatωi ∈ B for i = 1,2, where B is the
set:

B =
{

(ε,σ) ∈ R
2 | ε l + σ = cl +S, ε ∈ [0,ε∗], andσ ∈ [0,σ∗]

}

,

and each generator has an expected profit of zero.

Proof Given thatl ≤ K, the SO only needs to commit and dispatch one generator
and the SO does so in the least-costly way. Thus, the SO selects the generator with
the lowest total cost. The dispatch is determined by the ranking of these costs, which
for simplicity we refer to asbi = εi l + σi for i = 1,2. This game is thus isomorphic
to a simple Bertrand game, but in this case, each generator submits a total costbi =
εi l + σi . The total cost of each generator,bi is such thatbi = cl + S for i = 1,2 and
generators earn zero profit in equilibrium. Clearly, there are manyω that belong to
the setB but all vectors are payoff-equivalent because they result in the same expected
commitment, dispatch, and profits. Moreover, since the total cost of the offers equal
actual costs, expected profits are zero in equilibrium.
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We now turn to the case in whichl > K and both generators must be commit-
ted and dispatched to serve the load. Since both generators must be committed, their
startup costs must be borne, thus the optimal commitment anddispatch decisions will
be made purely on the basis of each generator’s energy offer,ε. As we show in the fol-
lowing lemmas and propositions, this characteristic of an optimum, coupled with the
generators’ binding capacity constraints, eliminates thepossibility of a pure-strategy
Nash equilibrium in the bidding game. As such, we assume thatthe generators fol-
low mixed-strategy equilibria. This, in turn, implies thateach generator has a strictly
positive probability of receiving make-whole payments, and as such each generators’
expected profit function is a non-decreasing function of itsstartup bid. Thus, each
generator will submit an offer with a startup cost equal to the startup offer cap,σ∗.

Proposition 2 If l > K, no pure-strategy Nash equilibria exist in the centrally com-
mitted market.

Proof Suppose(ε̃i , σ̃i), for i = 1,2, constitute a pure-strategy Nash equilibrium, and
assume without loss of generality that the generators have been labeled such that
ε̃1 ≤ ε̃2.

Suppose first that̃ε1 < ε̃2. Then generator 1 is the inframarginal generator and its
profit is:

Π̃1 = max{ε̃2K, ε̃1K + σ̃1}−cK−S.

If max{ε̃2K, ε̃1K + σ̃1} = ε̃1K + σ̃1 then generator 1 can profitably deviate by chang-
ing the energy portion of its offer tôε1 = ε̃2 −η , with η > 0 and small, since its
profits are increasing inε1. If, instead, max{ε̃2K, ε̃
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Lemma 2 If l >
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or as:

f (ε) =
F(ε)

c− ε
+

F(ε + σ∗/K)K
(l −2K)(c− ε)

, (3)

since the equilibrium is symmetric.
Equation (3) is a differential difference equation (DDE) characterizing a symmet-

ric Nash equilibrium energy offer density function. We can find a particular solution
of the DDE if we specify an interval of boundary conditions ofwidth (σ∗/K). We do
this by showing that the common supremum of the Nash equilibrium CDFs must be
the offer cap,ε∗, which implies thatF(ε) = 1 for all ε ≥ ε∗.

Lemma 7 If l > K, then a Nash equilibrium energy offer density function must have
ε = ε∗:

Proof Suppose thatε < ε∗ in an equilibrium. Then generatorj has a profitable de-
viation whereby it moves the density assigned to the interval (ε −η ,ε) to an energy
offer of ε∗, with η > 0. We can bound the change in generatorj ’s expected profits
depending on whether it would be the marginal or inframarginal generator with the
original strategy and deviation:

– If generator j is the inframarginal generator and would have been the infra-
marginal generator without deviating, its expected profitswill either increase by
at least(ε∗− ε̄)(l −K) if it receives make-whole payments or will not change if
it does not receive make-whole payments.

– If generatorj is the marginal generator and would have been the marginal genera-



Towards Equilibrium Offers in Unit Commitment Auctions with Nonconvex Costs 11

3.2 Self-Committed Market Equilibrium
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or

g(δ )−λ
G(δ )

δ −c
= 0, (8)

where we have dropped the subscripts, due to the symmetry of the equilibrium, and
definedλ = (l −K)/(2K− l). The differential equation (8) can be solved by defining
the integrating factor:

µ(δ ) = exp

{

−
∫ δ

a

λ
τ −c

dτ
}

=

(

δ −c
a−c

)−λ
,

wherea is an arbitrary constant. Multiplying both sides of equation (8) by µ(δ ) and
integrating with respect toδ yields:

G(δ ) = bexp

{

∫ δ

a

λ
τ −c

dτ
}

= b

(

δ −c
a−c

)λ
,

whereb is a constant of integration. In order to specify an exact solution to the differ-
ential equation we use the boundary condition that neither generator has a mass point
at the supremum offer,δ ∗, henceG(δ ∗) = 1 which gives:

b

(

δ ∗−c
a−c

)λ
= 1 =⇒ b =

(

a−c
δ ∗−c

)λ
=⇒ G(δ ) =

(

δ −c
δ ∗−c

)λ
,

which is the CDF of the mixed-strategy Nash equilibrium.
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expected settlement costs. Although the two markets are exp
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5 Discussion and Conclusion
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bids every six months. Furthermore, regulators often empower SOs to conduct market
mitigation, whereby they can scrutinize bids that seem excessively high or uncompet-
itive. These types of factors are not included in our analysis either, which is reflected
in the nature of the equilibria that we derive. For instance,the pure-strategy Nash
equilibria that we find in the self-committed market would likely lead to scrutiny, and
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