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Measuring the Benefits of Delayed Price-Responsive
Demand in Reducing Wind-Uncertainty Costs
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Abstract—Demand response has benefits in mitigating unit
commitment and dispatch costs imposed on power systems by
wind uncertainty and variability. We examine the effect of delays
in consumers responding to price signals on the benefits of
demand response in mitigating wind-uncertainty costs. Using a
case study based on the ERCOT power system, we compare
the cost of operating the system with forecasts of future wind
availability to a best-case scenario with perfect foresight of wind.
We demonstrate that wind uncertainty can impose substantive
costs on the system and that demand response can eliminate more
than 75% of these costs if loads respond to system conditions
immediately. Otherwise, we find that with a 30-minute lag in the
response, nearly 72% of the value of demand response is lost.

Index Terms—Power system economics, wind power genera-
tion, wind forecast errors, real-time pricing, unit commitment

NOMENCLATURE

A. Model Sets and Parameters

T time index set,
I conventional generator index set,

W wind generator index set,
cV

i (·) generatori’s variable cost function,
cNL

i generatori’s no-load cost,
cSU

i generatori’s startup cost,
K−

i generatori’s minimum operating point,
K+

i generatori’s maximum operating point,
R−

i generatori’s rampdown limit,
R+

i generatori’s rampup limit,
ρ̄SP

i generatori’s spinning reserve capacity,
ρ̄NS

i generatori’s non-spinning reserve capacity,
τ−

i generatori’s minimum-down time,
τ+

i generatori’s minimum-up time,
ω̄w,t maximum generation available from wind generatorw in

time periodt,
pt(·) inverse demand function in time periodt,

η̄t
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Wind variability and uncertainty can also be accommodated
using demand response. Having electricity demand follow
wind output reduces the need for fast-responding generation.
Papavasiliou and Oren [4] study the use of load control,
wherein deferrable loads are directly controlled and scheduled
to follow wind availability. They develop two methodologies
for load scheduling and estimate the value of such a scheme.
Klobasa [5] examines the effects of demand response in a
future German power system with 48 GW of wind, showing
that it reduces wind-uncertainty costs to less thane2/MWh.
Sioshansi [6] studies the Texas (ERCOT) system with 14 GW
of wind and real-time pricing (RTP). He shows that RTP can
eliminate up to 93% of wind-uncertainty costs, depending on
the price-responsiveness of the demand. Dietrichet al. [7]
examine the effect of demand shifting and peak shaving on
wind integration, showing that these programs can reduce
wind-uncertainty costs by up to 30%.

These analyses implicitly assume that demand responds
to real-time signals immediately, without any latency. While
this assumption may be reasonable for some forms of direct
load control, it can be more tenuous for indirect price-based
mechanisms, such as RTP. This is because there may be a lag
between price signals being sent, consumers observing them,
and adjusting their behavior in response. Automated controls
may alleviate such latency, however, since they reduce the
need for consumers to exert real-time control. Such latencycan
reduce the value of RTP in mitigating wind-uncertainty costs,
since its benefit arises from load quickly responding to wind
availability and reducing the need for generators to provide
balancing energy. Thus, a shortcoming of this literature isthat
it does not account for such latency in estimating the benefits
of demand response in mitigating wind-uncertainty costs.

We address this shortcoming by studying the effect of
consumer delays in responding to price signals on the benefits
of RTP in reducing wind-uncertainty costs. This paper has
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s.t. lt =
∑

i∈I

qi,t +
∑

w∈W

ωw,t, ∀ t ∈ T ; (2)

∑

i∈I

(ρSP
i,t + ρNS

i,t ) ≥ η̄t, ∀ t ∈ T ; (3)

∑

i∈I

ρSP
i,t ≥ ηSP

t · η̄t, ∀ t ∈ T ; (4)

η̄t = 0.03 · lt + 0.05 ·
∑

w∈W

ωw,t, ∀ t ∈ T ; (5)

K−

i ui,t ≤ qi,t, ∀ i ∈ I, t ∈ T ; (6)

qi,t + ρSP
i,t ≤ K+

i ui,t, ∀ i ∈ I, t ∈ T ; (7)

qi,t + ρSP
i,t + ρNS

i,t ≤ K+

i , ∀ i ∈ I, t ∈ T ; (8)

0 ≤ ρSP
i,t ≤
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standard deviations, thus RTP should have similar effects if
spatial correlation is explicitly modeled. On the other hand,
better capturing spatial correlation should lead to a lag inthe
demand response having less of an effect on RTP’s benefit in
reducing wind-uncertainty costs. This is because discrepancies
between time-t and -(t
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TABLE III
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Fig. 5. Wind available and used from 11:00 to 14:00 on 1 January with
immediate and lagged demand response.
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interactions between these technologies.
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