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Abstract Wind imposes costs on power systems due to uncertainty and variability of
real-time resource availability. Stochastic programmingand demand response are of-
fered as two possible solutions to mitigate these so-calledwind-uncertainty costs. We
examine the benefits of these two solutions, and show that although both will reduce
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short-run system operations and planning, due to the variable and uncertain nature of
real-time wind availability and the limited dispatchability of wind.
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si,t,ξ − hi,t,ξ = ui,t,ξ − ui,t−1,ξ , ∀ i,t,ξ ; (15)

0 ≤ gw,t,ξ ≤ ωw,t,ξ , ∀ w,t,ξ ; (16)

lt,ξ ≥ 0, ∀ t,ξ ; (17)

ui,t,ξ ,si,t,ξ ,hi,t,ξ ∈ {0,1}, ∀ i,t,
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each generator’ minimum up- and down-times when they are started up and shut-
down, respectively. Constraints (15) define the startup and shutdown state variables
in terms of changes in the online state variables. Constraints (16) limit each wind gen-
erator’s production based on wind availability under each scenario. Constraints (17)
and (18) impose non-negativity and integrality restrictions.

Constraints (19) through (26) are nonanticipativity restrictions. These constraints
ensure that the solution obtained by the model are implementable, meaning that they
do not depend, at timet, on information that is not yet available at that time. The
nonanticipativity constraints allow us to formulate our model in a compact manner,
without having to explicitly specify the structure of the underlying scenario tree [16,
27].

2.2 Model Data

Our simulations are based on data from the ERCOT power system. We model all of
the conventional generators that were in the ERCOT system in2005. Nuclear gener-
ators are assumed to be must-run units that always run at maximum capacity. Costs
of other conventional generators are estimated using heat rate and fuel and emission
permit price data obtained from Platts Energy and Global Energy Decisions. Genera-
tor constraint data are also obtained from these sources. Table1 summarizes technical
characteristics of the conventional generators modeled, based on fuel type.

Table 1 Number of Units, Total Generating Capacity, and Average Heat Rate and Minimum Up- and
Down-Time of Different Generator Types

Generator Number Total Heat Rate Minimum Up- Minimum Down-
Type (Fuel) of Units Capacity (MW) (GJ/MWh) Time (Hours) Time (Hours)

Coal 28 16081 11289 24 24
Natural Gas 320 59717 10439 8 11
Hydroelectric 20 529 N/A 0 0
Landfill Gas 7 44 10551 0 0

Hourly loads and the inverse demand functions in objective function (1) are based
on historical load data from 2005, obtained from the Public Utility Commission of
Texas (PUCT). In fixed-load cases, thelt,ξ variables model are fixed based on these
historical data. Thus the integral term in objective function (1) is fixed and the ob-
jective is equivalent to expected cost minimization. In thecases with RTP, we use
an assumed demand elasticity and calibrate the hourly inverse demand functions so
the actual historical load in the hour corresponds to the historical average retail price
of electricity in 2005 [5,6,31,29]. Thus the hour-t demand function has the property
that:

pt(lt) = pret , (27)

wherelt is the actual historical load in hourt and pret is the average retail price of
electricity in 2005. In doing so we only model own-price elasticities, assuming cross-
price elasticities to be zero. This assumption can potentially understate the extent to
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nameplate wind capacity, or 18% of ERCOT’s total generatingcapacity in 2005. We
use mesocale modeled data available in NREL’s Western Wind Resources Dataset
(WWRD)1 to model real-time availability of the wind generators. This dataset in-
cludes hourly output, as a percentage of nameplate capacity, at a number of locations
in Texas for the year 2005. The modeled wind generators are associated with loca-
tions in the dataset based on geographic distance, and the data are used to determine
the actual modeled energy available in each hour.2 Thus if we letω̄w represent the
nameplate capacity of wind generatorw, actual modeled wind availability in hourt
is assumed to equal:

φw,t · ω̄w, (28)

whereφw,t is a value between 0 and 1 taken from the WWRD.
The evolution of wind availability is modeled in the stochastic unit commitment

using a scenario tree. In each hour,τ, our scenario tree has a three-stage structure
[37]. The first stage, which covers the first three hours (τ throughτ +2), is assumed
to be deterministic with wind availability perfectly known(and equal to the actual
modeled wind availability, as defined by equation (28)). The second stage, which
covers the following three hours (τ +3 throughτ +5), has three possible wind avail-
ability realizations. The last stage, which covers the remaining hours, has six possible
scenarios. Figure2 is a schematic showing the assumed structure of the scenariotree.
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Fig. 2 Assumed structure of scenario tree.
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Table 5
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Table 7 Value of RTP and Stochastic Programming Together ($/MWh of Wind) in Reducing Wind-
Uncertainty Costs

Wind Forecast Error Demand Elasticity
Standard Deviation −0.1 −0.2 −0.3

0.05 0.23 0.32 0.42
0.1 0.75 1.05 1.26
0.15 0.92 1.86 2.33

program is in place. Table8 shows the value of stochastic over deterministic program-
ming when RTP is present. The values in the table are computedas the difference
between the values in table7 and4 or as:

(
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Comparing tables8 and5 shows that when an RTP program is in place, stochastic
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than 7% compared to deterministic programming. On the otherhand, since electric-
ity markets typically trade billions of dollars worth of energy annually, a 7% cost
savings is significant in absolute terms. Moreover, since most of the value from intro-
ducing RTP and stochastic programming individually are derived from introducing
the two together, there is incremental value in using stochastic programming and
RTP together to reduce wind-uncertainty costs. Our resultsalso show that RTP re-
tains its value in mitigating wind-uncertainty costs, evenif the system is operated
using a stochastic planning model. Although our measure of wind-uncertainty costs
is a standard metric used to evaluate the cost of integratingrenewables in power sys-
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