


before collecting data, nothing is known that will provide positive or negative
evidence about the influence of any of the variables on any of the others. There
are several ways to obtain data and to make inferences:

1. Conduct a study in which all variables are passively observed, and use the
inferred associations or correlations among the variables to learn as much
as possible about the causal relations among the variables.

2. Conduct an experiment in which one variable is assigned values randomly
(randomized) and use the inferred associations or correlations among the
variables to learn as much as possible about the causal relations..

3. Do (2) while intervening to hold some other variable or variables constant.

Procedure 1. is characteristic of non-experimental social science, and it has
also been proposed and pursued for discovering the structure of gene regulation
networks (Spirtes, et. al, 2001). Consistent algorithms for causal inferences from
such data have been developed in computer science over the last 15 years Under
weak assumptions about the data generating process, specifically the Causal

Markov Assumption, which says that the direct causes of a variable screen it
off from variables that are not its effects, and the Faithfulness Assumption,
which says that all of the conditional independence relations are consequences
of the Causal Markov Assumption applied to the directed graph representing the
causal relations. Consistent search algorithms are available based on conditional
independence facts — the PC-Algorithm, for example (Spirtes, et al., 2000) —
and other consistent procedures are available based on assignments of prior
probabilities and computation of posterior probabilities from the data (Meek,
1996; Chickering, 2002). We will appeal to facts about such procedures in what
follows, but the details of the algorithms need not concern us.

There are, however, strong limitations on what can be learned from data that
satisfy these assumptions, even supplemented with other, ideal simplifications.
Thus suppose we have available the true joint probability distribution on the
variables, and there are no unrecorded common causes of the variables (we say
the variable set is causally su�cient), and there are no feedback relations among
the variables. Under these assumptions, the algorithms can determine from the
observed associations whether it is true that X and Y are adjacent, i.e., whether

X directly causes Y or Y directly causes X , for all variables X; Y , but only in
certain cases can the direction of causation be determined. For example, if the
true structure is
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various search algorithms



only M values, in the worst case2 we require at least
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different experiments to determine the entire structure. Suppose we have
measured the messenger RNA (mRNA) expression levels of 10 genes and divide
the expression levels into high, medium and low values. We would require in
the worst case at least 295; 245 experiments.

Various modifications of the control procedure might improve these worst
case results, and for many probability distributions over the possible causal
structures the expected case number of experiments would presumably be much
better. But we propose a principled result: By combining procedure 1 with
procedure 2, under the assumptions so far listed, for N > 2, in the worst case,
the complete causal structure on N variables can be determined with N − 1
experiments, counting the null experiment of passive observation (procedure 1)
as one experiment, if conducted. Further, this is the best possible result when
at most one variable is randomized in each experiment.

2 The Idea

Consider the case of N = 3 variables. There are 25 directed acyclic graphs
on 3 vertices. In figure X we show the graphs sorted into sub-classes that are
indistinguishable without experimental intervention.
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imply that when Y and Z are independent conditional on X , there is no direct
causal relation between Y and Z.) The top graph in box 6 must therefore be the
true graph. By combining search procedures (in this case used informally) with
experimentation, we have determined the truth with a single experiment. (We
were lucky: if we had begun by randomizing Y or Z, two experiments would
have been required.) When we randomize X and follow up with a consistent
search procedure, which requires no additional experimentation, all of the di-
rect connections between the remaining variables can be estimated. Only the
directions of some of the edges remain unknown. Those directions can clearly
be determined by randomizing each of the remaining variables.

In some cases, we lose something when we experiment. If when X is ran-
domized, X and Y do not covary, we know that X does not cause Y , but we
do not know whether Y causes X or neither causes the other, because our ma-
nipulation of X has destroyed any possible influence of Y on X . Thus in the
single structure in box 9, if we randomize X , and Y and Z do not covary with
X , every structure in which X is not a direct or indirect cause of Y or Z, and



effect. Suppose instead, we begin by randomizing X . If we find X; Y are not
associated, a second experiment is required to determine whether Y causes X .

The proof of the bound has three perhaps surprising corollaries. (1) Any
procedure that includes passive observation in which no variables are random-
ized exceeds the lower bound for some cases, when the passive observation is
counted as an experiment. (2) Controlling for variables by experimentally fixing
their values is never an advantage. (3) “Adaptive” search procedures (Murphy,
1998; Tong and Koller, 2001) choose the most “informative” next experiment
given the results of previous experiments. That is, they choose the next ex-
periment that maximizes the expected information to be obtained. We also
sho
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The data is such that we can identify the conditional independencies if
there are any.

Interventions: Interventions are possible on every variable.

5.2 Definitions:

An experiment randomizes at most one variable and returns the joint distri-
bution of all variables.
A procedure is a a sequence of experiments and a structure learning algorithm
applied to the results of these experiments.
A procedure is reliable for an N vertex problem iff for all DAGs on N vertices
the procedure determines the correct graph uniquely.
A procedure is order reliable for an N vertex problem iff it is reliable for all
non-redundant orderings of experiments.
A procedure is adaptive iff it chooses at each step one from among the possible
subsequent experiments as a non-trivial function of the results of the previous
experiments.

5.3 Claims

Proposition 1 For N > 2, there is an order reliable procedure that in the worst

case requires no more than N−1 experiments, allowing only single interventions.

Proof: Consider a graph with N vertices where N > 2 and let X1; : : : ; XN

specify an arbitrary ordering of these vertices. Let each experiment consist of
an intervention on one variable. Perform N−1 experiments, one intervention on
each Xi where 1 ≤ i ≤ N−1. By Lemma 1 below, applying the PC algorithm to
the first experiment determines the adjacencies among at least X2 : : :XN . The
kth experiment determines the directions of all edges adjacent to Xk: iff Xj is
adjacent to Xk, then Xk is a direct cause of Xj if and only if Xj covaries with
Xk when Xk is randomized (since if Xk were only an indirect cause of Xj , and
since Xj and Xk are adjacent, Xj would have to be a direct cause of Xk, and
there would be a cycle); otherwise, Xj is a direct cause of Xk. XN has not been
randomized, but its adjacencies with every other variable have been determined
by the N − 1 experiments. Suppose XN and Xk are adjacent. Since Xk has
been randomized, Xk is a cause of XN if and only if XN covaries with Xk when
Xk is randomized. In that case, if Xk were an indirect but not a direct cause of
XN , then XN would be a direct cause of Xk, because XN and Xk are adjacent,
and hence there would be a cycle. If XN and Xk do not covary when Xk is
randomized, then, since they are adjacent, XN is a direct cause of Xk. If Xk

and XN are not adjacent, then this missing edge would have been identified in
one of the interventions on Xj , where j 6= k. These are all of the cases. Q.E.D.

Lemma 1 If G is a causal graph over a set of variables V, and G′ the manipu-

lated graph resulting from an ideal intervention on variable X in G, then for all
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The fact that the sequence of experimental interventions is arbitrary in the
previous proof suggests that this result is still true for the worst case even when
the choice of the next experiment is adaptive, that is, even if at each point
during the sequence of experiments the “best” experiment given the evidence
from the previous experiment is chosen. Although Proposition 3 follows from
the previous two proofs as a corollary, the proof below emphasizes the aspect
that no adaptive



5.4 Other Types of Experiments

In the previous two proofs an experiment was always assumed to consist of
an intervention on one particular variable. However, it might be thought that
other types of experiments, such as passive observations or interventions on
more than one variable might improve the worst case result of N − 1 experi-
ments. While it is true that multiple interventions (randomizing more than one
variable at a time) can shorten the experimental sequence, this is not the case
for passive observational studies. We call a passive observational experiment a
null-experiment.

The above proofs indicate that the worst case always occurs for particu-
lar complete graphs. If one were to run a null-experiment at any point in the
experiment sequence when the underlying graph is complete - the most likely
time would probably be at the beginning - then one would realize that one is
confronted with a complete graph. However, this information (and more) is
obtained anyway from two sequential experiments, each consisting of an inter-
vention on a particular variable. The null-experiment paired with any other
experiment cannot generate more information about the graph than two single
intervention experiments, since a single intervention experiment also identifies
all adjacencies except for those into the intervened variable. But a second in-
tervention on a different variable would identify these interventions, too. So the
only advantage of the null-experiment is in the case where only one experiment
is run. The above proofs only apply to graphs of three or more variables, which
certainly cannot always be identified by one experiment alone. In fact, even for
two variables, two experiments are needed in the worst case (see discussion in
main body of the paper).
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