
Journal of Econometrics 113 (2003) 33–48
www.elsevier.com/locate/econbase

Expert statistical testimony and epidemiological
evidence: the toxic e%ects of lead exposure

on children�

Stephen E. Fienberga ;∗, Clark Glymourb

mailto:fienberg@owen.vanderbilt.edu


34 S.E. Fienberg et al. / Journal of Econometrics 113 (2003) 33–48

scienti4c research data, cheating on examinations, drug smuggling, voting fraud, and
the adjustment of the US decennial census. For a wide variety of examples of the role
of this testimony in speci4c cases see DeGroot et al. (1986), Evett and Weir (1998),
Fienberg (1989, 1997a), Finkelstein and Levin (2001), Gastwirth (1988, 2000), and
Zeisel and Kaye (1997).

In many legal contexts the central issue is causal. In some, the causes of a single
event are under dispute. Did the leading driver’s sudden stop to avoid hitting a dog
cause the accident, or was it the failure of the anti-lock braking system in the trailing
driver’s car? In others, a causal generalization is at issue. Does chronic low-level
exposure to asbestos cause lung cancer? Does the level of radiation received by workers
at a nuclear power plant cause leukemia? If so, how strong is the e%ect, i.e., what is
the dose–response relationship?

In most cases where a causal generalization lies at the core of a legal action, for
practical or ethical reasons, no experimental evidence is available. On occasions where
experimental evidence is available, it usually involves laboratory animals and the re-
sults are very diJcult to extrapolate to humans. As a result, causal generalizations
are typically supported (or refuted) by non-experimental statistical evidence. In this
article, we lay out a prototypic case in which statistical and epidemiological evidence
is brought to bear by opposing experts on a causal claim: does chronic exposure to
low levels of lead cause cognitive de4cits in children? Using actual data sets, and a
4ctitious exchange between a plainti%s’ and a defendant’s expert, based in large part on
published exchanges in the statistical literature, we illustrate several classic argumen-
tative strategies used by econometric, epidemiological and statistical expert witnesses
to establish or refute causal generalizations from non-experimental statistical evidence.

After brieKy describing the case background, we present the core of the plainti%s’
expert testimony. The expert begins by showing a “raw” association between the pu-
tative cause and the e%ect, articulates possible confounders (covariates or exogenous
variables in statistical or econometric language), measures them, and then statistically
selects the ones that are worthy of further study. The expert then uses multiple regres-
sion to show that the “raw” association between cause and e%ect does not disappear
after controlling for such confounders. The same strategy is used not only in tort cases
but also in litigation involving discrimination as well as other areas of the law.

The defendant’s expert responds by challenging the validity of the initial presenta-
tion of evidence. The defendant’s expert argues that the plainti%s’ expert has omitted
important confounders from consideration, and has neglected to take into account mea-
surement error, especially in the confounders. The defendant’s expert then presents a
sensitivity analysis showing that there is indeed no e%ect of low levels of lead on IQ
for “reasonable” ranges of measurement error.

On rebuttal, the plainti%s’ expert shows that the way in which the defendant’s expert
has included the supposedly omitted variables is wholly unreliable and conveniently
misleading. He demonstrates that measurement error in the confounders can be taken
into account, even modeled statistically, and that doing so only strengthens the con-
clusions he drew.

Our presentation attempts to illustrate the technical aspects of the “battle of experts”
that an economist or statistician can expect to experience in a legal context (for some
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evaluation was performed subsequent to hospital discharge and it concluded that Samuel
had su%ered an 18 point IQ loss, from 109 Weschler full scale IQ to 91” (see Frank,
1992, pp. 262–263). The other plainti%s are children who lived in the same building
and were exposed to low-level quantities of lead through lead paint that had once been
used throughout the building. Information on health and behavioral problems that are
seemingly linkable to substantial lead exposure is also available and not in dispute;
however, there is a dispute regarding the implications of low-level lead exposure. All
of the children have current IQs below 100 and evidence available to indicate that,
at least in several instances their IQs are lower than when measured several years
earlier.

In support of their claims, the plainti%s present a case based on testimony of a
statistical expert with background in epidemiology. In actual cases, it is more likely
that there would be multiple experts, e.g., an epidemiologist who might have conducted
a study of the e%ects of low level lead exposure, as well as the statistician who
analyzed the data, and perhaps others to testify as to the extent to which the evidence
is consistent with other studies. In the case of the e%ects of lead on IQ, there is an
extensive epidemiological and statistical literature on which the experts could opine,
e.g., see Needleman and Gatsonis (1990), Pocock et al. (1994), and Waternaux et al.
(1998).
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Fig. 1. Alternative explanations of an association between lead and IQ.

Variables that inKuence both a possible cause and its supposed e%ect are said in
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Table 2
Regression results of lead regression

Predictor Coef Stdev T p-Value

Constant −33:10 45.54 −0:73 0.468
lead −0:
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Table 3
Correlations and p-values (n = 221)

lead fab nlb med mab piq ciq

lead 1.00
fab 0.08 1.00

(0.23)
nlb 0.11 0.39 1.00

(0.10) (0.00)
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Table 5
Partially completed correlation matrix

iq momiq dadiq home lead

iq 1
momiq 0.477 1
dadiq 1
home 1
lead −0:253 −0:124 1

Table 6
Completed correlation matrix

iq momiq dadiq home lead

iq 1
momiq 0.477 1
dadiq 0.5110 0.2550 1
home 0.4500 0.2300 0.1800 1
lead −0:253 −0:124 −0:1370 −0:4700 1

omits father’s IQ will be more negative than it should. The same is true for the quality
of the home environment (home). In the plainti%s’ expert analysis, it might well be
that the bias from omitting the father’s IQ and home is big enough to account for the
entire estimated negative e%ect.

In order to explore these issues, the expert has used other studies in the literature to
impute, or 4ll in, the correlations between father’s IQ, home, and the variables used
by the plainti%s in order to statistically examine the nature of the plainti%s’ omitted
variable bias. He began with the correlation matrix shown in Table 5, where the only
values we have are from the study used by the plainti%s.

For the remaining values, he used the mean value of other published studies in which
these variables are measured, or we use reasonable scienti4c background knowledge.
For example, in order to impute the correlation between home and lead, we found
seven published studies that include this correlation. The median of these published
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the regressors (lead, momiq, faiq, home, etc.). As is well known in the statistical and
economics community, the estimates from such an analysis are biased if the regressors
are measured with error. That is, if the absolute value of the correlation between the
real confounder and the variable used to measure it is less than 1, then there is a
measurement error. The lower this correlation, the more the measurement error. Since
the test–retest correlation of IQ scores is in between 0.9 and 0.95, we know that the IQ
regressors are measured with an error. We also have data on the lead measurements,
as well as the home score. The defendant’s expert explains that we can correct the
results from multiple linear regression to take the measurement error into account, but
the plainti%s’ expert neglected to do so.

4.3. Sensitivity analysis

Rather than to commit ourselves to a single value for the imputed correlations or the
exact amount of measurement error in each regressor, the defendant’s expert performed
10,000 analyses, each of which slightly perturbed the original values that we took as
our best guess. He sampled values for each correlation that we had to impute from a
low of 1

2 of our best guess to twice our best guess. He also did similar perturbations
for a wide range of measurement errors. For each of the 10,000 analyses performed,
he stored an estimate of the e%ect of lead on IQ and of the signi4cance level of
the estimates. In none of the 10,000 did he 4nd a signi4cant e%ect of lead on IQ.
Therefore, when omitted variables and measurement error are taken into account, he
claims that there is no scienti4c evidence to support the claim that low levels of lead
has a deleterious e%ect on IQ.

5. The plainti�s’ expert rebuttal

5.1. Omitted variables

Although the defense has applied a lot of energy in trying to negate two decades
of evidence on the e%ect of lead on IQ, there are several problems with their analysis
(Waternaux et al., 1998). On rebuttal, the plainti%s’ expert describes these problems,
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Table 7

Correlation Defense’s imputed values More reasonable estimates

Home–momiq 0.230 0.410
Home–lead −0:470 −0:100

IQ and the other variables in the study by (1) using other studies in which father’s IQ
and any other variable in their analysis occurs, or (2) by reasoning from background
theory. The problem with the 4rst strategy is that correlations are population speci'c.
That is, the correlation between the father’s IQ and the amount of lead his child was
exposed to might be very di%erent in a middle class suburban population than it is in
a poor inner city. By using studies from di%erent domains to impute correlations into
the Massachusetts study, the expert neglected this basic fact of sampling. In several of
the correlations that he imputed, the other studies cited vary considerably depending
on the population studied, and in fact varied over a larger range than he used in his
sensitivity analysis.

After scrutinizing these external sources more carefully, the plainti%s’ expert made
more reasonable guesses as to the correlations to be imputed, and then repeated the
analyses. His results (Table 7) were completely at odds with the ones presented by the
defendant’s expert, in particular, linked to two imputed correlations: home and momiq,
and home and lead.

By using the defendant’s expert values, the home variable’s correlation with lead
and its correlation with IQ make it an omitted variable that, when included, accounts
for most of the association between lead and IQ, rendering the estimate of the direct
e%ect of lead on IQ insigni4cant. By using reassessed values, which he claims are
much more plausible for the population under study, the expert argues that the reverse
is true: the home variable does not account for enough of the association to make the
e%ect of lead on IQ fall below standard levels of signi4cance.

5.2. Measurement error

The expert goes on to agree with his counterpart that the regressors are probably
measured with error. What he then argues is that the defendant’s expert neglected to
mention that measurement error can often attenuate the apparent e%ect estimated by
multiple regression. In this case, measurement error might make the e%ect of lead on IQ
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Fig. 2. Posterior distribution of the e%ect of lead on IQ.

The alternative he explains is to do a fully Bayesian analysis to incorporate the
entire distribution rather than simply consider the endpoints of an interval. He goes on
to describe such an analysis in which the regressors included lead, mother’s IQ, head
circumference, number of prior pregnancies, and father’s education (e.g., see Scheines
et al., 1999, for a more complete description of the model and its speci4cation). The
histogram in (Fig. 2) shows the posterior distribution over the causal strength of the
e%ect from lead to IQ. The median in the posterior is −0:175, the mean −0:1723, and
the standard deviation in the posterior is 0.148. Although there are some values in the
posterior over this e%ect that are positive, the bulk of the mass is negative, indicating
that lead has a deleterious inKuence on IQ. Almost all of the posterior probability is
assigned to values that imply lead exposure reduces IQ.

5.3. Meta-analyses
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to 10 �g=g tooth lead) is associated with a mean de4cit in full scale IQ of 1–2
IQ points (p. 1189).

Testimony about this and other meta-analyses would likely be introduced at trial by
other expert witnesses and the defense would surely have witnesses to dispute the
4ndings!
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