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work of Euclidean theories is confined to theorem-proving: axioms may

be reformulated to separate and illuminate their contents or to provide

justifications.

The results of Socratic theories, the final analyses, are almost never accurate

and have no interesting consequences except their instances; their value, and it

can be considerable, is in the sequence of arguments produced for them, the

examples and counterexamples, the explorations of conceptual relations that

justify or defeat them, and the approximate connections they articulate. The

ubiquitous failure of philosophical analyses should be no surprise: they are

confined almost exclusively to explicit, or occasionally simple inductive,

definitions, and philosophically interesting concepts are seldom if ever strictly

so related. Euclidean theories are almost always inaccurate as well, and that

too should be no surprise, since universality without vacuity is rare. Yet, unlike

Socratic theories, Euclidean theories have the virtue that their consequences

can be interesting, informative and not obvious from their starting assump-

tions. Euclidean theories are justified in part by their fruits; Socratic theories

have few, if any, except in the process that generates them. Socratic theories

overwhelmingly predominate in contemporary analytic philosophy, but

Euclidean theories occasionally arise and have some influence, as with theories

of counterfactual inference, or axioms of subjective probability.

These divisions in philosophy are imperfectly correlated with a division in

aims. Philosophy can aim to describe and clarify a conceptual pr /Fwobability.



chapters may give the impression that this is a standard Socratic work. It is

not. The book begins that way, but then moves to a Euclidean mode. A second

aim of the book is to apply pieces of the theory and Woodward’s elaboration,

specifically the ideas of intervention and invariance, to impose constraints on

causal explanations, and to account for qualitative features of our assessments

of the value of various explanations. These two goals are addressed in the

book almost interactively, with discussions of key themes from the axiomatic

theory mixed in with applications and illustrations of the proposed constraints

and semi-Socratic explorations.

I will organize things a bit differently, first presenting the background to the

axiomatic theory Woodward reconstructs; then briefly the theory itself in

something close to its original form; next Woodward’s analysis of its pieces

and the general themes which he finds connected with those pieces, or which he

thinks are needed to justify causal attributions, and finally his novel axioma-

tization and generalization of the theory’s content. Following that, I will

briefly describe some of the applications Woodward makes of component

ideas and meta-themes for assessing causal explanations, and the constraints

on scientific explanation he would impose. My only objections to the book are

disagreement with some of his constraints on a causal explanation, and regret

that it does not take account of more of the relevant statistical and computa-

tional literature.

2 Interventions and causal Bayes nets

In the 1980s, Donald Rubin ([1986]) developed a counterfactual analysis of

causation and experimentation which has come to dominate statistics. It fit

into the parameter estimation paradigm of statistics, but afforded no means of

computing the effects of interventions in complex systems, or of computing

the effects when unobserved causes also influence affected variables. That

possibility was developed in the same period by Jaime Robins ([1986]), in

work that allowed the computation of the effects on remote variables. Because

of the difficulty of its presentation, Robins’ work had little influence for some

time. Neither approach offered much advance on how to search for and

discover causal relations in the absence of experiments. Those developments

depended on the formalization of Bayes networks.

Bayes networks are directed acyclic graphs (DAGs) whose nodes are ran-

dom variables with a joint probability distribution subject to a restriction.

That restriction, the Markov condition, limits the pairing of DAGs and

probabilities: each variable is independent of its graphical non-descendants

conditional on its graphical parents. Parts of the formalism are implicit in

theories of linear relationships developed in many disciplines throughout

the last century, for example in regression analysis, factor analysis, Sewell
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Wright’s path models, and elsewhere, although there is nothing in the Markov

condition that limits it to linear systems. In the late 1970s, a group of

statisticians which included T. Speed, S. Lauritzen and K. Vijayan among

others ([1978]) developed the general formalism and named the Markov

condition (which perhaps ought to have been called the Reichenbach condi-

tion.) Speed (Kiiveri and Speed [1982]) recognized that the linear causal

models then popular in sociology were examples of such networks. In the

late 1980s, Judea Pearl ([1988]) and his students described many properties of

these networks, most importantly, an algorithm for deciding whether a DAG

implies, by the Markov condition, any given conditional independence rela-

tion, and described data-driven search procedures for limited classes of

graphs. Pearl explicitly denied that the graphs have an objective causal inter-

pretation, on the grounds that he saw no way to distinguish associations of

two variables produced by a causal relation between them from associations

produced by an unobserved or unrecorded common cause. Pearl’s reservation

echoed a long philosophical tradition claiming that algorithms for scientific

discovery are impossible, a claim argued explicitly by Hempel from the alleged

impossibility of algorithms that correctly introduce novel unobserved vari-

ables or ‘theoretical terms’.

A natural response to Pearl’s worry was to connect the Bayes net repre-

sentations with experimental interventions that could in principle distinguish

causal connections and that would warrant a causal interpretation of the

networks. That step was taken by Spirtes et al. ([1993]) who connected the

Markov condition with interventions—essentially showing that an ideal inter-

vention in a causal system could be represented as a particular kind of

graphical and probabilistic relation that would allow computation of the

probabilistic effects of interventions. Specifically, the theory of Causal Bayes

nets requires two axioms and two definitions for understanding the predic-

tions of a wide class of causal hypotheses, and a third axiom for their dis-

covery. Versions of all three axioms were in Pearl ([1988]), but without the

interpretation and theorems that make up the causal theory. The first two



of no other variables in G*, and extending the joint probability distribution

Pr on G to a distribution Pr*, satisfying the Markov condition for G*, such

that each value of Ix determines a unique value of X and, conditional on any

value of Ix producing a value x of X, the conditional probability function

Pr*(jX¼ x)¼Pr(jX¼ x). An ideal intervention on X for G and Pr is a

specification of a value for a policy variable for X. The third axiom, sufficient

for discovery, is faithfulness: all of the conditional independence relations in

Pr follow from the Markov condition applied to G.

Reformulating the theory of Bayes nets as a causal theory and introducing

definitions would be idle without the demonstration that the reformulation

and definitions permit the use of causal hypotheses in prediction and explana-

tion and without showing that such hypotheses can be learned from data.

These are among Woodward’s own desiderata for a theory of causal explana-

tion. To that end, Spirtes et al. (1) showed that the probabilistic effects of ideal

interventions on a system represented by a DAG could be calculated from the

Markov condition, in some cases even when the DAG contains unobserved

variables, and that such interventions could in principle distinguish any causal

hypotheses represented by directed acyclic graphs; (2) proved that with a

natural probability measure on the parameters describing a probability dis-

tribution for a graph, the converse of the Markov condition—the faithfulness

condition—holds with probability 1; and (3) proved that, assuming faithful-

ness, and given any family of probability distributions for which conditional

independence relations can be decided, there is a feasible algorithm for

recovering partial information about causal structure represented by a

DAG from observed values of variables (for independent, identically dis-

tributed sample cases) even when, for all one knows beforehand, there are

unobserved common causes at work. It is exactly the abstractness of the

networks—the fact that they do not represent the degree of any causal influ-

ence by parameters—that makes them appropriate objects for automated

search. Parameters, for example linear coefficients or conditional probabil-

ities, can of course be attached to such networks, but that is best done after the

skeletal causal structure is selected.

The result is an axiomatic philosophical theory relating causation, prob-

ability and interventions whose consequences are still an active area of

research in statistics and computer science—and, yes, in philosophy. This

work has been developed in many other ways by many others, with applica-

tions in genetics, biology, economics, educational research, sociology, space

physics, psychology and elsewhere, and it has been supplemented with

extensive and ingenious developments by Pearl and his collaborators, with

applications to a range of philosophical issues. Hempel’s argument was met in

part by the demonstration of algorithms that correctly (in the large sample

limit) discover the presence of some unobserved common causes, and other
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algorithms that allow correct prediction of the effects of interventions when

unobserved common causes are known to be present (Spirtes et al. [1993]).

More recently, Hempel’s argument has been further disabled by the discovery

of algorithms that under specifiable assumptions correctly identify variables

related only by unobserved common causes, introduce those unobserved

variables explicitly, and identify their causal relations with one another (Silva

et al. [2003]; Spirtes et al. [2000]).

The theory of causal Bayes nets is obviously not the whole, complete story

about causal relations in science. Some graphical causal models are cyclic, not

acyclic; some models have ‘correlated errors’ given no causal interpretation;

many causal theories are in the form of differential or difference equations,

etc. The theory implies no claim that one or another of these fundamental

notions—cause, probability, intervention—is the place to start, no more than

Euclid’s axioms imply that line segments are more fundamental than circles.

Woodward suggests that for understanding causal explanation, the notion of

intervention is the place to start.

Woodward defines an intervention this way: I is an intervention on X with

respect to Y if and only if

1. I is causally relevant to X

2. I is not causally relevant to Y through a route that excludes X

3. I is not correlated with any variable Z that is causally relevant to Y through

a route that excludes X

4. I acts as a switch for other variables that are causally relevant to X. That is,

for some values of I, X ceases to depend on the values of other variables that

are causally relevant to X.

The primitives of the analysis are ‘dependence’, ‘causal relevance’, ‘correla-

tion’ and ‘route’. The last term can be decomposed in graphical representa-

tions, which is what Woodward has in mind: a route from A to B is a directed

path from A to B in which each link signifies a direct causal relation. Clause 4

makes it clear that ‘A is causally relevant to B’ means that A is a cause of B. I,

X, and Y are variable features of an individual system. Woodward has in mind

a definite population of values of these variables, or some potential distribu-

tion of values, and presumably by ‘correlation’ he means something more

general than correlation, a frequency dependence in an actual population,

or absence of independence in a probability distribution.

There are several reasons to understand Woodward’s definition, which, as

he notes, is closely related to the notion of an ‘ideal intervention’ introduced

by Spirtes et al. as a term of art rather than a Socratic conceptual analysis of

an ordinary notion. Surely an intervention, in an ordinary sense, can change
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the form of dependence of X on other causes of X—for example, change the

conditional probability of values of X on values of other causes of X—without

entirely disabling the other causes (this is allowed in Spirtes et al.). Surely, too,

the intervention I can cause some intermediate I’ which causes X—here the

ambiguity of ‘dependence’ gets in the way of clarity. Finally, but not exhaust-

ively, in an ordinary and scientific sense, an intervention might directly alter

two or more variables.

With the notion of intervention in hand, Woodward defines ‘direct cause’

and ‘total cause’, this time following Pearl ([2000]). I paraphrase (to avoid

some minor ambiguities) his proposal as follows:

(1) X is a direct cause of Y with respect to variable set V not containing X and

Y if and only if there exist values v for variables in V and values x, x’ for X, such

that interventions that hold constant all variables in V at v and that vary X

between x and x’ change the value, or the probability of Y.

(2) X is a total cause of Y if and only if there is a possible intervention on X that

changes the probability distribution of Y.

Since the definition of intervention presupposes the notion of ‘route’—i.e., a

sequence of direct causes—the definition of ‘X is a direct cause of Y’ appears

circular. Woodward argues otherwise, on the grounds that the definition does

not presuppose information about whether X is a direct cause of Y, only about

other direct causes. Ok, the definition is ill-founded, not circular: it could never



variables—in other words, a causal statistical model—we cannot with the

definitions/postulates produced so far predict anything about the probability

distribution that would result from an intervention, nor can we predict the

conditional probabilities after an intervention. We cannot, in other words, yet

explain how such theories are tested experimentally or used in quantitative

explanations, let alone how they could be learned from data that is in part or

whole non-experimental.

So Woodward needs more, and he gets it. The Causal Markov condition

would fill all of the lacunae above, and more, but rather than invoking it,

Woodward introduces and discusses two key aspects: invariance and mod-

ularity. Only after clarifying those aspects does he introduce axioms repre-

senting them, axioms that imply the Causal Markov condition.



same causal hypotheses, at least not if causal relations are assumed to be

modular, a property Woodward defines this way:

A system of equations is modular if (i) each equation is level invariant

under some range of interventions and (ii) for each equation there is a



by PM and PLI alone. Still more is needed for an understanding of how one

can reason even with these simple theories.

Woodward supplements these principles with two others.

(PM2) When X and Y are distinct, Pr(X jY and set (Parents (Y ))¼
Pr(X j set(Y) and set (Parents (Y ))

(PM3) If X does not cause Y, then Pr(X jParents(X) and set(Y))¼Pr(X jY
and Parents(X ))

and observes that: ‘we may think of the Causal Markov condition CM as the

conjunction of PM and PM3’ (p. 341). I assume he has in mind that the two

postulates imply that:

(4) If X does not cause Y, then Pr(X jParents(X))¼Pr(X jParents(X)

and Y)

which is the Causal Markov condition. PLI then follows by an obvious

definition of the ‘set’ operation in terms of an ideal intervention, and PM2

is a logical consequence. The theory of Causal Bayes nets is recovered, but

separated into novel pieces. Only now, with a full axiom set, can the theory

explain elementary features of causal reasoning such as those noted above.

We gain something important from Woodward’s development of the the-

ory: an understanding of the interaction of the ideas of intervention and

invariance in causal explanations; the idea of modularity in causal models

in which the probability of each variable is a function of the values of its direct

causes and a parameter for each such cause, and a characterization of an

analogous idea in more general models. There is a good deal left out of the

discussion, including the theory of search and discovery and generalizations of

the theory that allow for cyclic graphs representing feedback systems, and

generalizations that allow ‘correlated errors’ to which no causal interpretation

is assigned. Other connections with the computer science and statistical lit-

erature are passed by—for example, the use of an idea of modularity close to

Woodward’s, although actually stronger, in Bayesian search procedures for

causal Bayes nets (Heckerman et al.). Woodward does a considerable amount

to invite philosophers out of their disciplinary cave into the sunlight, and

perhaps it is churlish to complain that he did not do more. So much for the

first aim I ascribe to the book.



give an analysis of the notion that a particular value of a variable in a causal

system is actually a cause of the value of another variable. His discussion is

built around ideas proposed by Pearl and by Hitchcock, but I find it clearer

and simpler than their presentations. Separately, Woodward plausibly

accounts for the fact that the period of a pendulum is explained by the

law of the pendulum, the length of its arm, and the gravitational field, but

the period cannot, with the law and the gravitational field, explain the length

of the pendulum arm: interventions that change the length of the pendulum

arm change the period, but there are no interventions that change the length of

the pendulum arm by intervening on the period. A similar analysis applies to



a cause, he argues, are typically ambiguous. Granted, but philosophers are

skilled at disambiguating when they want to, and I think the point remains

that genotype is not, on his view, even a remote cause of an individual’s

treatment by others. These last cases are in my view regrettable consequences

of trying to found a theory of causal explanations on interventions. The

alternative, perhaps not the only one, but a good one, is to regard ‘X is a

direct cause of Y with respect to variables V’ as an unanalyzed primitive

relation, to subject concatenated causes to the Markov condition, and to

define ‘X is an intervention with respect to Y in system G’ as a particular

kind of direct cause respecting the Markov condition. The result is an

axiomatic theory in which race and sex and mineral composition can be

causes—indeed, the very theory developed by Spirtes et al.

There are philosophers—Colin McGinn and Ronald Giere come to mind—

who have claimed that only Socratic theories are philosophy. Woodward’s


