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Abstract

Students interacting with educational software generate dn their use of soft-
ware assistance and on the correctness of their answers.da@ta comes in the
form of a time series, with each interaction as a separate pizint. This data
poses a number of unique issues. In educational researthtsrehould be in-
terpretable by domain experts, which strongly biases Irgrtowards simpler
models. Educational data also has a temporal dimensionigtgenerally not
fully utilized. Finally, when educational data is analyzesing machine learning
techniques, the algorithm is generally off-the-shelf wittle consideration for
the unique properties of educational data. We focus on tbbl@m of analyz-
ing student interactions with software tutors. Our objexts to discover differ-
ent strategies that students employ and to use those s¢smtegoredict learning
outcomes. For this, we utilize hidden Markov model (HMM)stlring. Unlike
some other approaches, HMMs incorporate the time dimemsiothe model. By
learning many HMMs rather than just one, the result will in# smaller, more
interpretable models. Finally, as part of this process, ae examine different
model selection criteria with respect to the models préasfistof student learning
outcomes. This allows further insight into the propertiesnadel selection cri-
teria on educational data sets, beyond the usual crostatialn or test analysis.
We discover that the algorithm is effective across multipkasures and that the
adjustedR? is an effective model selection metric.

1 Introduction



attempt. By not incorporating the entirety of the data, ipatarly the ordering of actions, such
analyses falil to realize the data’s full potential.

In a computer tutoring system, the log data may be treatediazeaseries with variable intervals
of observation. If the performance on each task is conditlgindependent given the student, i.e.
solving a math problem step does not require successfui@adto prior steps, then each task can
be treated as a separate sequence of observations. Thastepor sequence can be considered
a segment of a time-series. For example, if a student regjbef at the beginning of the step and
then attempts solutions until they solve the step, thakelia different strategy than if a student
attempts to solve the step and, upon failing, requests help.

In this paper, the concept of student strategies is ingtatiby hidden Markov models (HMMs).
HMMs are graphical models which treat observed data as areddequences of symbols. HMMs
will be discussed in more detail in the Background sectiaowéwver, the primary observation is,
by learning many different HMMs from educational data, eBdliM can be treated as a model of
a different student strategy. Prior work in educationahdatning has largely focused on learning
single, complicated models that describe all possibleesttidehaviors. The advantages of collec-
tions of HMMs are four-fold: they have disjoint observatiothe observations are ordered, they are
much easier to interpret, and they provide extremely ateypeedictions. Further, the algorithm
we propose offers several advantages over standard HMMediug algorithms: it has adaptive
parameters, biases strongly towards smaller models, anithcarporate external measures.

The remainder of this paper is divided into several sectiofise Background section covers the
relevant machine learning literature. The Method sectiescdbes a number of unique properties
to our method, including data preprocessing. The Datasedegscribes the two data se2(t)0.964541(i)0.964.8901






Student Step Action | Duration
S01 | ARCS-3 ARC-EG-MEASURE| Attempt | 11.446
S01 ARCS-3 ARC-EG-MEASURE| Attempt | 4.847
S01 | ARCS-3 ARC-EG-MEASURE| Attempt| 19.588
S01 | ARCS-3 ARC-EG-MEASURE| Attempt | 6.179
S01 | ARCS-3 ARC-EG-MEASURE| Attempt| 10.535

Table 1: Example Tutor Step

using spectral clustering instead of partition-basedtehirsg. [6] Jebara et. al.'s work on spectral
clustering with HMMs is especially important as a potergiatnue for future work. [6]

Some of the prior work on E-M HMM clustering uses fixed valuesiK and for the number of
states N) per initial model[7]. Other examples use fixed initial veduforK, but allow the merging
or splitting of clusters. For example, Schliep uses "modejery”, which merges and splits clusters
based on the total size of each cluster[11]. However, it idaar which merge/split criteria are
optimal. We will instead uselMM-Clusteras a subroutine for another algorithm, and so will limit
it to fixed values oK andN.

3 Data

We consider two data sets extracted from log files of the Gégn@ognitive Tutor. In the tutor,
students are presented with a geometry problem and sevepsy éext fields. A step in the problem
requires filling in a text field. The fields are arranged sysitically on each problem page and
might, for example, ask for the values of angles in a polygdioothe intermediate values required
to calculate the circumference of a circle.

Both data sets originate in earlier experimental studiesugh only the control groups for each
study will be used.

In each data set, a problem is defined as a series of steps @mdtep as a series of transactions.
A student transaction is defined by the following four-tugl&tudent,Step,Action,Duration An
action can be either an "Attempt” or "Help Request’. Eachadsdt consists of a series of these
transactions, categorized by step and student. An exarggéssshown in Table 1.

02This data set originates in an experiment published in 20QZhe control condition includes 21
students and 57204 actions divided into 3740 steps.

06This data set originates in an experiment published in 2[1@4.The control condition includes
16 students and 16374(FIX) actions divided into 5217 (FE&ps.

Both data sets are similar in that they cover the same gegruaits and use the same general
interface, though there are some differences in both doowitent and interface layout. The most
important differences in the data lie in the students’ distion of actions and steps. In the 06 data,
students exhibit far fewer actions per step, which comfggany direct comparison between results
for the two data sets.

4 Method

A student action is defined by the following four-tupléStudent,Step,Action,Duratipn Once
actions are conditioned on students and steps, what remsatmstuple( Action,Duratior) . While

it is technically possible to directly analyze the data iis thvo-dimensional, partially continuous
space, the results are difficult to interpret. Instead, icems threshold of seconds which divides
actions into "fast” and "slow” actions. There exists a maggpirom the bivariatéAction,Duratior)
tuple to a single four-category variable, shown in Table 2.

Guessing and Trying are fairly self-explanatory: a guessssispected attempt to solve using the
system’s correctness-feedback while a try is a suspectethjat to solve using actual problem-
solving techniques. A drill is rapidly requesting hintsppably without reading them, either to get



Attempt | Help Request
Fast | Guess Drill
Slow Try Reason

Table 2: Mapping fron{ Action,Duratior) to one variable



Inp

ut: sequence s&p,student se$, student learning gairs

Output: collectionC
iterationt = 0;
modelsK = 2;
statedN = 2;

coll
whi

end

ectionC® = New-HMMs(K,N);
le termination criteria not satisfiedo
iterationt = t + 1;
relearnC'—! = HMM-Cluster@Q,K,Ct*1);
create partitionsef3®, 0 <k <K,0<s<S§S;
foreach sequenceg; € Q do
find the best modét = arg max 1(gi| M ");
lets; € S bet the student acting in sequenge
assign sequenag to partitionP2;
end
ignificant model®R = Regressior,[Py,. .. Pk]);
oreachM; ' € Ct~! do
if M{! € R then
| assignM ' toCH;
end

ol )]

end
if model count criteria satisfiethen
| K=K +1;
end
if state count criteria satisfiethen
| N=N+1;
end
C' = C'u New-HMMs(K — |C[,N);

returnCt;

Algorithm 2: Stepwise-HMM-Cluster
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0.84

D(0.38), R(0.44)

Figure 2: Dominant model for = 8, 02 data

0.28 0.67 0.89
"
D(0.99)

Figure 3: Try-Guess model far= 10, 02 data

0.92

However, this raises a conflict between the results and cansmiese. The models shown in Figure
1 and Figure 2 have a high probability of emitting a sequeridgpe TGGGGG, i.e. a single Try
followed by many Guesses. This is, in the educational liteea considered a very poor learning be-
havior. Intuitively, it represents a failed attempt to sofallowed by repeated, unthinking guessing.
This disagreement can be resolved by noting that no singlgefrio any collection can be inter-






quests, usually Drill requests. Some positive-learningef®involve hints as well. For example, in
Figure 5, there is actually a 30% chance of generating a Resd®n as the first action, before a
series of attempts.

6 Conclusions

Using a traditional HMM clustering algorithm with fixed vasi of K, the number of models, and
N, the number of states per model, it is possible to find catlestof HMMs that predict learning.
These models not only predict learning, but because the Hitelselatively small, they are human-
interpretable as classes of student strategies. Howénghasic learning algorithm requires many
random restarts, and it's unclear how to prevent the algoritrom "fishing” for results and thus
overfitting.

An alternative approach is to iteratively increase the &alofK andN, keeping at each iteration an
optimal collection of HMMs from prior iterations. This apggach, calledstepwise-HMM-Clustere-
quires fewer clusterings to converge to a highly prediatiaglel. Further, it avoids pre-hoc choices
for K andN, biases strongly towards smaller models, provides betttrset predictions, and in-
corporates external measures of learning gain.

We showed that usin§tepwise-HMM-Clustefound collections with high training-set prediction
accuracy, even after adjusting for the number of models inlleation. Further, for the 02 data,

withholding part of the data as a test-set still resulteddcugate predictions, on the order of a 0.5
correlation. For the other data set, a more heavily perthlsdection criterion also gave similar
correlations. This algorithm satisfies the primary goalsiofeducational data mining method: it
produces interpretable models, provides good fits acrasssa#s, and not only fits the tutor data,
but predicts actual learning outcomes.

Additionally, generalization from a learning sciencesspective is not a simple matter of successful
predictions on test data: it requires the production of galnearning principles that can be applied
independently of any given parametric mod@&tepwise-HMM-Clusteproduced such a general
principle. Our results provide a strong argument that ba#ffolding as it is presently used is not
actually very effective and that most learning results fprsistent attempts to solve. This suggests
a new paradigm for tutoring system design that emphasitempts and provides hints or worked
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