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Abstract

Students interacting with educational software generate data on their use of soft-
ware assistance and on the correctness of their answers. This data comes in the
form of a time series, with each interaction as a separate data point. This data
poses a number of unique issues. In educational research, results should be in-
terpretable by domain experts, which strongly biases learning towards simpler
models. Educational data also has a temporal dimension thatis generally not
fully utilized. Finally, when educational data is analyzedusing machine learning
techniques, the algorithm is generally off-the-shelf withlittle consideration for
the unique properties of educational data. We focus on the problem of analyz-
ing student interactions with software tutors. Our objective is to discover differ-
ent strategies that students employ and to use those strategies to predict learning
outcomes. For this, we utilize hidden Markov model (HMM) clustering. Unlike
some other approaches, HMMs incorporate the time dimensioninto the model. By
learning many HMMs rather than just one, the result will include smaller, more
interpretable models. Finally, as part of this process, we can examine different
model selection criteria with respect to the models predictions of student learning
outcomes. This allows further insight into the properties of model selection cri-
teria on educational data sets, beyond the usual cross-validation or test analysis.
We discover that the algorithm is effective across multiplemeasures and that the
adjusted-R2 is an effective model selection metric.

1 Introduction



attempt. By not incorporating the entirety of the data, particularly the ordering of actions, such
analyses fail to realize the data’s full potential.

In a computer tutoring system, the log data may be treated as atime-series with variable intervals
of observation. If the performance on each task is conditionally independent given the student, i.e.
solving a math problem step does not require successful solutions to prior steps, then each task can
be treated as a separate sequence of observations. Thus, each step or sequence can be considered
a segment of a time-series. For example, if a student requests help at the beginning of the step and
then attempts solutions until they solve the step, that is likely a different strategy than if a student
attempts to solve the step and, upon failing, requests help.

In this paper, the concept of student strategies is instantiated by hidden Markov models (HMMs).
HMMs are graphical models which treat observed data as an ordered sequences of symbols. HMMs
will be discussed in more detail in the Background section; however, the primary observation is,
by learning many different HMMs from educational data, eachHMM can be treated as a model of
a different student strategy. Prior work in educational data mining has largely focused on learning
single, complicated models that describe all possible student behaviors. The advantages of collec-
tions of HMMs are four-fold: they have disjoint observations, the observations are ordered, they are
much easier to interpret, and they provide extremely accurate predictions. Further, the algorithm
we propose offers several advantages over standard HMM clustering algorithms: it has adaptive
parameters, biases strongly towards smaller models, and can incorporate external measures.

The remainder of this paper is divided into several sections. The Background section covers the
relevant machine learning literature. The Method section describes a number of unique properties
to our method, including data preprocessing. The Data section describes the two data se2(t)0.964541(i)0.964.89017(i)0.964541(n)-5.89017(g)





Student Step Action Duration
S01 ARCS-3 ARC-EG-MEASURE Attempt 11.446
S01 ARCS-3 ARC-EG-MEASURE Attempt 4.847
S01 ARCS-3 ARC-EG-MEASURE Attempt 19.588
S01 ARCS-3 ARC-EG-MEASURE Attempt 6.179
S01 ARCS-3 ARC-EG-MEASURE Attempt 10.535

Table 1: Example Tutor Step

using spectral clustering instead of partition-based clustering. [6] Jebara et. al.’s work on spectral
clustering with HMMs is especially important as a potentialavenue for future work. [6]

Some of the prior work on E-M HMM clustering uses fixed values for K and for the number of
states (N ) per initial model[7]. Other examples use fixed initial values forK, but allow the merging
or splitting of clusters. For example, Schliep uses ”model surgery”, which merges and splits clusters
based on the total size of each cluster[11]. However, it is unclear which merge/split criteria are
optimal. We will instead useHMM-Clusteras a subroutine for another algorithm, and so will limit
it to fixed values ofK andN .

3 Data

We consider two data sets extracted from log files of the Geometry Cognitive Tutor. In the tutor,
students are presented with a geometry problem and several empty text fields. A step in the problem
requires filling in a text field. The fields are arranged systematically on each problem page and
might, for example, ask for the values of angles in a polygon or for the intermediate values required
to calculate the circumference of a circle.

Both data sets originate in earlier experimental studies, though only the control groups for each
study will be used.

In each data set, a problem is defined as a series of steps and each step as a series of transactions.
A student transaction is defined by the following four-tuple: 〈 Student,Step,Action,Duration〉 . An
action can be either an ”Attempt” or ”Help Request”. Each data set consists of a series of these
transactions, categorized by step and student. An example step is shown in Table 1.

02This data set originates in an experiment published in 2002.[1] The control condition includes 21
students and 57204 actions divided into 3740 steps.

06This data set originates in an experiment published in 2006.[10] The control condition includes
16 students and 16374(FIX) actions divided into 5217(FIX) steps.

Both data sets are similar in that they cover the same geometry units and use the same general
interface, though there are some differences in both domaincontent and interface layout. The most
important differences in the data lie in the students’ distribution of actions and steps. In the 06 data,
students exhibit far fewer actions per step, which complicates any direct comparison between results
for the two data sets.

4 Method

A student action is defined by the following four-tuple:〈 Student,Step,Action,Duration〉 . Once
actions are conditioned on students and steps, what remainsis the tuple〈 Action,Duration〉 . While
it is technically possible to directly analyze the data in this two-dimensional, partially continuous
space, the results are difficult to interpret. Instead, consider a threshold ofτ seconds which divides
actions into ”fast” and ”slow” actions. There exists a mapping from the bivariate〈Action,Duration〉
tuple to a single four-category variable, shown in Table 2.

Guessing and Trying are fairly self-explanatory: a guess isa suspected attempt to solve using the
system’s correctness-feedback while a try is a suspected attempt to solve using actual problem-
solving techniques. A drill is rapidly requesting hints, probably without reading them, either to get
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Attempt Help Request
Fast Guess Drill
Slow Try Reason

Table 2: Mapping from〈 Action,Duration〉 to one variable



Input: sequence setQ,student setS, student learning gainsG
Output: collectionC
iterationt = 0;
modelsK = 2;
statesN = 2;
collectionC0 = New-HMMs(K,N );
while termination criteria not satisfieddo

iterationt = t + 1;
relearnCt−1 = HMM-Cluster(Q,K,Ct−1);
create partition setsP s

k , 0 ≤ k < K, 0 ≤ s < S;
foreach sequenceqi ∈ Q do

find the best modelk = arg maxk l(qi|M
t−1
k );

let si ∈ S bet the student acting in sequenceqi;
assign sequenceqi to partitionP s

k ;
end
significant modelsR = Regression(G,[P0,. . . ,PK ]);
foreach M t−1

k ∈ Ct−1 do
if M t−1

k ∈ R then
assignM t−1

k to Ct;
end

end
if model count criteria satisfiedthen

K = K + 1;
end
if state count criteria satisfiedthen

N = N + 1;
end
Ct = Ct∪ New-HMMs(K − |Ct|,N );

end
returnCt;

Algorithm 2: Stepwise-HMM-Cluster
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τ



τ Models Max States



G(0.4), T (0.6) D(0.38), R(0.44)
1

0.01

0.16

0.99
0.84

Figure 2: Dominant model forτ = 8, 02 data

T (0.99) G(0.99) D(0.99) R(0.99)
0.95

0.52

0.28 0.67 0.89

0.92

Figure 3: Try-Guess model forτ = 10, 02 data

However, this raises a conflict between the results and common sense. The models shown in Figure
1 and Figure 2 have a high probability of emitting a sequence of type TGGGGG, i.e. a single Try
followed by many Guesses. This is, in the educational literature, considered a very poor learning be-
havior. Intuitively, it represents a failed attempt to solve followed by repeated, unthinking guessing.
This disagreement can be resolved by noting that no single model in any collection can be inter-





quests, usually Drill requests. Some positive-learning models involve hints as well. For example, in
Figure 5, there is actually a 30% chance of generating a Reason action as the first action, before a
series of attempts.

6 Conclusions

Using a traditional HMM clustering algorithm with fixed values ofK, the number of models, and
N , the number of states per model, it is possible to find collections of HMMs that predict learning.
These models not only predict learning, but because the HMMsare relatively small, they are human-
interpretable as classes of student strategies. However, this basic learning algorithm requires many
random restarts, and it’s unclear how to prevent the algorithm from ”fishing” for results and thus
overfitting.

An alternative approach is to iteratively increase the values ofK andN , keeping at each iteration an
optimal collection of HMMs from prior iterations. This approach, calledStepwise-HMM-Cluster, re-
quires fewer clusterings to converge to a highly predictivemodel. Further, it avoids pre-hoc choices
for K andN , biases strongly towards smaller models, provides better test-set predictions, and in-
corporates external measures of learning gain.

We showed that usingStepwise-HMM-Clusterfound collections with high training-set prediction
accuracy, even after adjusting for the number of models in a collection. Further, for the 02 data,
withholding part of the data as a test-set still resulted in accurate predictions, on the order of a 0.5
correlation. For the other data set, a more heavily penalized selection criterion also gave similar
correlations. This algorithm satisfies the primary goals ofan educational data mining method: it
produces interpretable models, provides good fits across data sets, and not only fits the tutor data,
but predicts actual learning outcomes.

Additionally, generalization from a learning sciences perspective is not a simple matter of successful
predictions on test data: it requires the production of general learning principles that can be applied
independently of any given parametric model.Stepwise-HMM-Clusterproduced such a general
principle. Our results provide a strong argument that hint-scaffolding as it is presently used is not
actually very effective and that most learning results frompersistent attempts to solve. This suggests
a new paradigm for tutoring system design that emphasizes attempts and provides hints or worked
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