
On the Number of Experiments Sufficient and in the Worst Case



for



su�ce to identify any DAG on N vertices. Moreover,
this is a best worst case lower bound that adaptive
strategies cannot improve (Eberhardt, et al., 2004).

3 THE MINIMAL NUMBER OF

EXPERIMENTS FOR

ARBITRARY DAGs

We now consider the problem when we are free to
randomize simultaneously as many



graph among the N variables and we happen - due to
bad luck - to intervene upon the vertices in the order of
decreasing in-degree, i.e. each randomized vertex is a
sink for all vertices not randomized so far. If the graph
were not complete, missing edges would be found rel-
atively quickly and this additional information could
be exploited. Intervention on a vertex implies that
all incoming edges are broken, hence a large in-degree
implies that very little information is obtained, since
there may be no edge or there may be an incoming
edge. However, an outgoing edge would be immedi-
ately identi�able due to the dependency between the
variables in all possible conditioning sets.

Lemma 3.4 dlog2(N)e experiments are necessary in

the worst case to subject all pairs in a causal graph

among N variables to a directional test.

Proof: It can easily be shown that N = 2; 3; 4 the
number of experiments necessary to determine the
causal structure is 1, 2 and 2 respectively, i.e. sat-
isfying the above bound.

Suppose the theorem holds for all N � r. Then let
N = r + 1. Consider all possibilities for the �rst
experiment E1. It can consist of an intervention on
K variables, where 0 � K < N = r + 1. This im-
plies that E1 must subject K(N � K) pairs of vari-
ables to a directional experiment. If the underlying
true graph is complete, E1 results in a complete undi-
rected graph among the (N �K) variables that were
not subject to an intervention and is a zero informa-
tion experiment for all
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pairs of variables in the
intervened set I. Note that jIj = K < N = r + 1
and jUj = N �K < N = r + 1. Hence, we know by
the inductive hypothesis that log2(max(K; N�K)) ex-
periments are necessary to resolve the remaining sub-
graphs



Figure 2: The intervention sets required to subject all
pairs of variables to a directional test within log2(N) =
3 experiments for 8 and 7 variables respectively. While
in the case of N = 8, there is one variable that is
subject to an intervention in every experiment (shown
in black), this can be avoided for N = 7

in directional tests for all pairs of variables that go be-
tween the p sets and in adjacency tests for all pairs of
variables in the graph. So after p�1 experiments every
pair of variables has been subject to one adjacency test
and only the pairs of variables within each of the p sets
have not yet been subjected to a directional test. From
Lemma 3.2 it follows that log2(kmax) experiments are
su�cien



texts where, for example, the sample, no
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