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The Similarity of Causal Inference in Experimental  

and Non-Experimental Studies* 
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Abstract 

For nearly as long as the word “correlation” has bee
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1. Introduction 

Philosophers, statisticians, and computer scientists, at least those who have abandoned 

the goal of producing a reductive account of causation, have come to largely agree on 

how to represent qualitative causal claims and how to connect such claims to statistical 

evidence through probabilistic independence and dependence (Glymour and Cooper 

1999; Pearl 2000; Spirtes, Glymour and Scheines 2000; Woodward 2003).1  Included in 

this scheme is a method for representing experimental interventions, and for clarifying 

what sorts of assumptions we must make about interventions in order to consider them 
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instrumental variable that stands in the same relationship to X and Y in the observational 

study as does the ideal intervention on X in the experimental study.   In what follows, I 

briefly sketch the key ideas behind the representational system, I show how an 

experimental causal inference works in this system, how the typical observational causal 

inference works involving detectible instrumental variables, and the parallel between 

detectible instrumental variables and experimental interventions.  

2. Representing Causation 

2.1 Causal Graphs, Probability Distributions, and the Causal Markov Axiom 

Recently from computer science, but as far back as Sewall Wright in the early 20th 

century (Wright 1934), the fundamental representational device for causal systems is the 

directed graph.  A directed graph is simply a collection of vertices and directed edges 

over pairs of these vertices. In a directed graph interpreted as a causal graph, each 

directed edge (or arrow) from one vertex X to another Y is taken to assert that X is a 

direct cause of Y relative to the set of vertices in the graph. For example, Figure 1 

represents a graph G = <V,E>, with vertices V 
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 Exposure Infection Symptoms 
 

 

Figure 1: Causal Graph 

 

A causal graph is assumed to be representationally complete in the following sense: if 

two variables in the graph are effects of a common cause C, then C is included in the 

graph. This does not require us to include all the causes of a variable in the graph, it only 

requires that we include all the common causes.  To be clear, this is a representational 

assumption, not one concerning which variables we will measure when the goal is 

inference. The key assumption connecting causal graphs to probability distrubtions is an 

axiom that constrains the set of probability distributions that a given causal graph can 

generate (Spirtes, et. al. 2000):   

 

Causal Markov Axiom: In any probability distribution P generated by a given 

causal graph G, each variable X is probabilistically independent of the set Y 

consisting of all variables that are not effects of X, conditional on the direct 

causes of X. That is, ∀X ∈
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3. A pair of paths, one from some third variable C (possibly latent) to X and one 

from C to Y. 
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of association can be used to estimate the size of the effect of X on Y (Pearl, 2000).  The 

key to this type of simple experimental inference is that the intervention is: 

 

i) a direct cause of X, and  

ii) not adjacent to Y, and  

iii)  ideal.   

 

Consider why it is desirable that it satisfy these conditions.  First, if the intervention is a 

direct cause of X, but also of Y or some other cause of Y,5 then X and Y will be 

associated in virtue of the intervention, not in virtue of the effect of X on Y (Figure 6). 
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after an intervention, but not because of an effect of X on Y.  Again, we could handle the 

second form of treatment-bias (Figure 7-b) by conditioning on Z, but the first form 

(Figure 7-a) is fatal. 
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(a) (b)  
Figure 7: Treatment-Bias Interventions 

   

Generally then, an intervention on X can be fat-hand or treatment-biased without 

making causal inference impossible, but IX cannot be adjacent6 to Y in the causal graph. 

Need the intervention be ideal? Is causal inference still possible in cases in which the 

intervention on X does not fully determine X’s probability distribution and thereby x-out 

the influence of all other direct causes on X?  For the argument as I have sketched it 

above, clearly yes, but in general the answer is no.   

In cases where we know something about the parametric form of the dependence of 

effects on their causes, for example linear structural equation models (Bollen 1989), 

interventions need not be ideal. In linear structural equation models each effect is a linear 

combination of its direct causes plus Gaussian noise, and in certain such models 

instrumental variable estimators (Bowden and Turkington 1974) can be used to estimate 

the strength of causal influence even in the presence of latent common causes. In Figure 

8, for example, IX is an instrumental variable for X  
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αβ / α = β is a consistent estimator of the effect of X on Y, even though X and Y are 

confounded by a latent  common cause.  
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Figure 8: Instrumental Variable IX 
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4. Causal Inference in Non-Experimental Studies 

In non-
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unconditionally independent, then the PAG and some of the members of the equivalence 

class it represents are pictured in Figure 9. 
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After going through all the triples and orienting them with the collider rule, we go 

through them again, this time looking for triples in which B was oriented as a non-

collider from the triple A,B,C, but as collider from a triple A,B,D, that is Figure 11. 
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Figure 11 

 

We can then combine these orientations to fully orient the Bo-oC adjacency as B  C, 

which is the only way to orient Bo-oC in order to avoid making B a collider in the A,B,C 

triple. We call this the “away-from-collider rule.”10    

Consider a concrete empirical case to illustrate. Sewall and Shah (1968) collected data 

on over 10,000 Wisconsin high school seniors in order to study the relationship between 

parental encouragement (PE) and college plans (CP). They also measured socio





 18 

\ Sex 
PE 

IQ 
CP 

 
Fi



 19 

X or there is a latent common cause of V and X.  By intervening on X with IX, we ensure 

that the adjacency between IX and X is into X, but for the causal inference it is not strictly 

necessary.   

I use the word “detectible” to highlight the fact that, in a non-experimental study, the 

issue is finding a variable that detectibly satisfies the same basic conditions that we 

believe are satisfied in an experimental study.  For example, in the case study involving 

college plans and parental encouragement above, we managed to detect that the 

adjacency between Sex and PE was into PE because Sex and IQ are independent, thus 

giving us a collider oriented triple: Sex o PE o IQ.   

Suppose, however, that Sewall and Shah had not thought to measure IQ.  Just 

measuring Sex, PE, and CP, and finding only 
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question that does not permit, for ethical or practical reasons, an experimental 

intervention, a good causal scientist should not throw up his hands and proclaim that 

“only experimental studies can support causal conclusions.”  Rather she should seek to 

systematically combine background knowledge and statistical analysis to find detectible 

instruments for causal inference. 
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11 We do not need to condition on PE to make Sex and IQ independent. 

12 We do need to condition on PE to make Sex and CP independent. 

13 The orientation of the IQ - CP and IQ - PE adjacencies results from applying 

another rule I will not explain.  It is not relevant to orienting the PE  CP adjacency. 

14 which means they are associated no matter what set we condition on. 
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