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Abstract

The conditional independence relations
present in a data set usually admit multiple
causal explanations | typically represented
by directed graphs | which are Markov
equivalent in that they entail the same
conditional independence relations among
the observed variables. Markov equivalence
between directed acyclic graphs (DAGs)
has been characterized in various ways,
each of which has been found useful for
certain purposes. In particular, Chickering’s
transformational characterization is useful in
deriving properties shared by Markov equiva-
lent DAGs, and, with certain generalization,
is needed to justify a search procedure
over Markov equivalence classes, known as
the GES algorithm. Markov equivalence
between DAGs with latent variables has also
been characterized, in the spirit of Verma
and Pearl (1990), via maximal ancestral
graphs (MAGs). The latter can represent
the observable conditional independence
relations as well as some causal features of
DAG models with latent variables. However,
no characterization of Markov equivalent
MAGs is yet available that is analogous to
the transformational characterization for
Markov equivalent DAGs. The main contri-
bution of the current paper is to establish
such a characterization for directed MAGs,
which we expect will have similar uses as
Chickering’s characterization does for DAGs.

1 INTRODUCTION

Markov equivalence between directed acyclic graphs
(DAGs) has been characterized in several ways (Verma
and Pearl 1990, Chickering 1995, Andersson et al.

1997). All of them have been found useful for various
purposes. In particular, the transformational char-
acterization provided by Chickering (1995) is useful
in deriving properties shared by Markov equivalent
DAGs. Moreover, when generalized to the I-map re-
lationship, the transformational characterization war-
rants an e–cient search procedure over Markov equiv-
alence classes of DAGs, known as the GES algorithm
(Meek 1996, Chickering 2002).

In many situations, however, we need also to consider
DAGs with latent variables. Indeed there are cases
where no DAGs can perfectly explain the observed con-
ditional independence relations unless latent variables
are introduced. Such latent variable models, fortu-
nately, can be represented by ancestral graphical mod-
els (Richardson and Spirtes 2002), in the sense that
for any DAG with latent variables, there is a (maxi-
mal) ancestral graph that captures the exact observ-
able conditional independence relations as well as some
causal relations entailed by that DAG. Since ancestral
graphs do not explicitly include latent variables, they
provide, among other virtues, a flnite search space of
latent variable models (Spirtes et al. 1997).

Markov equivalence for ancestral graphs has been char-
acterized in ways analogous to the one given by Verma
and Pearl (1990) for DAGs (Spirtes and Richardson
1996, Ali et al. 2004). However, no characterization is
yet available that is analogous to Chickering’s trans-
formational characterization. In this paper we estab-
lish one for directed ancestral graphs, which we expect
will have similar uses as it does for DAGs. Specif-
ically we show that two directed maximal ancestral
graphs are Markov equivalent if and only if one can be
transformed to the other by a sequence of single mark
changes | adding or dropping an arrowhead | that
preserve Markov equivalence.

The paper is organized as follows. The remaining of
this section introduces the relevant deflnitions and no-
tations. We then present the main result in section
2, drawing on some facts proved in Zhang and Spirtes



(2005) and Ali et al. (2005). We conclude the paper in
section 3 with a discussion of the potential application,
limitation and generalization of our result.

1.1 DIRECTED ANCESTRAL GRAPHS

In full generality, an ancestral graph can contain three
kinds of edges: directed edge (!), bi-directed edge
($) and undirected edge (¡¡). In this paper, how-
ever, we will conflne ourselves to directed ancestral
graphs | which do not contain undirected edges |
until section 3, where we explain why our result does
not hold for general ancestral graphs. The class of
directed ancestral graphs, due to its inclusion of bi-
directed edges, is suitable for representing observed
conditional independence structures in the presence of
latent confounders.

By a directed mixed graph we denote an arbitrary
graph that can have two kinds of edges: directed and
bi-directed. The two ends of an edge we call marks or
orientations. So the two marks of a bi-directed edge
are both arrowheads (>), while a directed edge has
one arrowhead and one tail (¡) as its marks. Some-
times we say an edge is into (or out of) a vertex if
the mark of the edge at the vertex is an arrowhead
(or a tail). The meaning of the standard graph the-
oretical concepts, such as parent/child, (directed)
path, ancestor/descendant, etc., remains the same
in mixed graphs. Furthermore, if there is a bi-directed
edge between two vertices A and B (A $ B), then A
is called a spouse of B and B a spouse of A.

Deflnition 1 (ancestral). A directed mixed graph is
ancestral if

(a1) there is no directed cycle; and

(a2) for any two vertices A and B, if A is a spouse of
B (i.e., A $ B), then A is not an ancestor of B.

Clearly DAGs are a special case of directed ancestral
graphs (with no bi-directed edges). Condition (a1) is
just the familiar one for DAGs. Condition (a2), to-
gether with (a1), deflnes a nice feature of arrowheads
| that is, an arrowhead implies non-ancestorship.
This motivates the term "ancestral" and induces a nat-
ural causal interpretation of ancestral graphs (see, e.g.,
Richardson and Spirtes 2003).

Mixed graphs encode conditional independence rela-
tions by essentially the same graphical criterion as
the well-known d-separation for DAGs, except that in
mixed graphs colliders can arise in more edge conflg-
urations than they do in DAGs. Given a path u in a



(G1) resulting from the above construction. The m-
separation relations in G1 correspond exactly to the
d-separation relations over fX1; X2; X3; X4; X5g in



2.1 LOYAL EQUIVALENT GRAPH

Given a MAG, a mark (or edge) therein is invariant
if it is present in all MAGs equivalent to the given one.
Invariant marks are particularly important for causal
inference because in general data can only determine
up to a Markov equivalence class of graphs. An algo-
rithm of detecting all invariant arrowheads in a MAG
is given by Ali et al. (2005), and that of further detect-
ing all invariant tails is presented in Zhang and Spirtes
(2005). The following is a special case of Corollary 18
in Zhang and Spirtes (2005).

Proposition 2. Given any DMAG G, there exists a
DMAG H Markov equivalent to G such that all bi-
directed edges in H are invariant, and every directed
edge in G is also in H.

We will call H in Proposition 2 a Loyal Equivalent
Graph (LEG) of G. In general a DMAG could have
multiple LEGs. A distinctive feature of the LEGs
is that they have the fewest bi-directed edges among
Markov equivalent DMAGs2. Drton and Richardson
(2004) explored the statistical signiflcance of this fact
for bi-directed graphs (graphs that contain only bi-
directed edges). Roughly speaking, if the LEGs of a
bi-directed graph are DAGs, then fltting is easy; oth-
erwise fltting is not easy (in a speciflc technical sense).

Another feature which will be particularly relevant to
our argument is that between a DMAG and any of its
LEGs, only one kind of difierences is possible, namely,
some bi-directed edges in the DMAG are oriented as
directed edges in its LEG. For a simple illustration,
compare the graphs in Figure 2, where H1 is a LEG of
G1, and H2 is a LEG of G2. (Note that X4 $ X5 is in-
variant, which is why no DAG without latent variables
can represent the observable conditional independence
structure entailed by Figure 1(a)).

A directed edge in a DMAG is called reversible if
there is another Markov equivalent DMAG in which
the direction of the edge is reversed. To prove Theorem
2 below, we also need a fact that immediately follows
from Corollary 4.1 in Ali et al. (2005).

Proposition 3. Let A ! B be any reversible edge in
a DMAG G. For any vertex C (distinct from A and
B), there is an invariant bi-directed edge between C
and A if and only if there is an invariant bi-directed
edge between C and B.

In particular, if H is a LEG of a DMAG, then A ! B
being reversible implies that A and B have the same
set of spouses, as every bi-directed edge in H is invari-
ant.

2For general MAGs, Corollary 18 in Zhang and Spirtes
(2005) also asserts that the LEGs have the fewest undi-
rected edges as well.

Figure 2: A LEG of G1 (H1) and a LEG of G2 (H2)

2.2 LEGITIMATE MARK CHANGE

Eventually we will show that any two Markov equiv-
alent DMAGs can be connected by a sequence of
equivalence-preserving mark changes. It is thus de-
sirable to give some simple graphical conditions un-
der which a single mark change would preserve equiv-
alence. Lemma 1 below gives necessary and su–cient
conditions under which adding an arrowhead to a di-
rected edge (i.e., changing the directed edge to a bi-
directed one) preserves Markov equivalence. By sym-



is Markov equivalent to G. To see that G′ is ancestral,
note that it only difiers from G, an ancestral graph,
regarding the edge between A and



between them. The theorem then follows from a simple
induction on the number of difierences.

The antecedent of the theorem implies that the dif-
ferences between G and G′ are all of the same sort: a
directed edge (!) is in G while the corresponding edge
in G′ is bi-directed ($). Let

Difi = fyj there is a x such that x ! y is in G and
x $ y is in G′g

It is clear that G and G′ are identical if and only if
Difi = ´. We claim that if Difi is not empty, there is
a legitimate mark change that eliminates a difierence.
Choose B 2 Difi such that no proper ancestor of B
in G is in Difi . Let

DifiB = fxjx ! B is in G and x $ B is in G′g

Since B 2 Difi , DifiB is not empty. Choose A 2
DifiB such that no proper descendant of A in G is in
DifiB . The claim is that changing A ! B to A $ B
in G is a legitimate mark change | that is, it satisfles
the conditions stated in Lemma 1.

The veriflcations of conditions (t1) and (t2) in Lemma
1 take advantage of the speciflc way by which we
choose A and B. For example, if condition (t1) were
violated, i.e., there were a directed path d from A to
B other than A ! B, then in order for G′ to be ances-
tral, d would not be directed in G′, which implies that
some edge on d would be bi-directed in G′. It is then
easy to derive a contradiction to our choice of A or B
in the flrst place. The veriflcation of (t2) is similarly
easy (which uses the fact that G and G′ have the same
unshielded colliders).

To show that (t3) also holds, suppose for contra-
diction that there is a discriminating path u =
hD; ¢ ¢ ¢ ; C; A; Bi for A in G. By Deflnition 7, C is a
parent of B. It follows that the edge between A and
C is not A ! C, for otherwise A ! C ! B would be
a directed path from A to B, which has been shown
to be absent. Hence the edge between C and A is bi-
directed, C $ A (because C, Deflnition 7, is a collider
on u). Then the antecedent of the theorem implies
that C $ A is also in G′. Moreover, the antecedent
implies that every arrowhead in G is also in G′, which
entails that in G′ every vertex between D and A is
still a collider on u. It is then easy to prove by induc-
tion that every vertex between D and A on u is also
a parent of B in G′ (using the fact that G′ is Markov
equivalent to G), and hence u is also discriminating for
A in G′ (see, e.g., Lemma 3.5 in Ali et al. 2004). But A
is a collider on u in G′ but not in G, which contradicts
(e3) in Proposition 1.

Obviously a DMAG and any of its LEGs satisfy the an-
tecedent of Theorem 1, so they87(a)-63vs-9-G



Theorem 3. Two DMAGs G and G′ are Markov
equivalent if and only if there exists a sequence of sin-
gle mark changes in G such that

1. after each mark change, the resulting graph is also
a DMAG and is Markov equivalent to G;

2. after all the mark changes, the resulting graph is
G′.

Proof: The "if" part is trivial { since every mark
change preserves the equivalence, the end is of course
Markov equivalent to the beginning. Now suppose G
and G′ are equivalent. We show that there exists such
a sequence of transformation. By Proposition 2, there
is a LEG H for G and a LEG H′ for G′. By Theo-
rem 1, there is a sequence of legitimate mark changes
s1 that transforms G to H, and there is a sequence of
legitimate mark changes s3 that transforms H′ to G′.
By Theorem 2, there is a sequence of legitimate mark
changes s2 that transforms H to H′. Concatenating s1,
s2 and s3 yields a sequence of legitimate mark changes
that transforms G to G′.

As a simple illustration, Figure 3 gives the steps in
transforming G1 to G2 according to Theorem 3. That
is, G1 is flrst transformed to one of its LEGs, H1; H1
is then transformed to H2, a LEG of G2. Lastly, H2
is transformed to G2.

Figure 3: A transformation from G1 to G2

Theorems 1 and 2, as they are currently stated, are
special cases of Theorem 3, but the proofs of them ac-
tually achieve a little more than they claim. The trans-
formations constructed in the proofs of Theorems 1
and 2 are e–cient in the sense that every mark change
in the transformation eliminates a difierence between
the current DMAG and the target. So the transforma-
tions consist of as many mark changes as the number of
difierences at the beginning. By contrast, the transfor-
mation constructed in Theorem 3 may take some "de-
tours", in that some mark changes in the way actually
increase rather than decrease the difierence between G
and G′. (This is not the case in Figure 3, but if, for
example, we chose difierent LEGs for G1 or G2, there
would be detours.) We believe that no such detour is
really necessary, that is, there is always a transforma-
tion from G to G′ consisting of as many mark changes
as the number of difierences between them. But we
are yet unable to prove this conjecture.

3 Conclusion

In this paper we established a transformational prop-
erty for Markov equivalent directed MAGs, which is
a generalization of the transformational characteriza-
tion of Markov equivalent DAGs given by Chickering
(1995). It implies that no matter how difierent two
Markov equivalent graphs are, there is a sequence of
Markov equivalent graphs in between such that the
adjacent graphs difier in only one edge. It could thus
simplify derivations of invariance properties across a
Markov equivalence class | in order to show two ar-
bitrary Markov equivalent DMAGs share something in
common, we only need to consider two Markov equiv-
alent DMAGs with the minimal difierence. Indeed,
Chickering (1995) used his characterization to derive
that Markov equivalent DAGs have the same number
of parameters under the standard CPT parameteriza-
tion (and hence would receive the same score under the
typical penalized-likelihood type metrics). The dis-
crete parameterization of DMAGs is currently under
development4. We expect that our result will come in
handy to show similar facts once the discrete parame-
terization is available.

The property, however, does not hold exactly for gen-
eral MAGs, which may also contain undirected edges5.

4Drton and Richardson (2005) provide a parameteriza-
tion for bi-directed graphs with binary variables, for which
the problem of parameter equivalence does not arise be-
cause no two difierent bi-directed graphs are Markov equiv-
alent.

5Undirected edges are motivated by the need to repre-
sent the presence of selection variables, features that in°u-
ence which units are sampled (that are conditioned upon
in sampling).



A simple counterexample is given in Figure 4. When
we include undirected edges, the requirement of ances-
tral graphs is that the endpoints of undirected edges
are of zero in-degree | that is, if a vertex is an end-
point of an undirected edge, then no edge is into that
vertex (see Richardson and Spirtes (2002) for details).
So, although the two graphs in Figure 4 are Markov
equivalent MAGs, M1 cannot be transformed to M2
by a sequence of single legitimate mark changes, as
adding any single arrowhead to M1 would make it non-
ancestral. Therefore, for general MAGs, the transfor-
mation may have to include a stage of changing the
undirected subgraph to a directed one in a wholesale
manner.

B C B C

M1 M2

A A

Figure 4: A simple counterexample with general
MAGs: M1 can’t be transformed into M2 by a se-
quence of legitimate single mark changes.

The transformational characterization for Markov
equivalent DAGs was generalized, as a conjecture, to
a transformational characterization for DAG I-maps
by Meek (1996), which was later shown to be true by
Chickering (2002). A graph is an I-map of another if
the set of conditional independence relations entailed
by the former is a subset of the conditional indepen-
dence relations entailed by the latter. This general-


