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Abstract

Over the decades, computational models of human cognition have advanced from
programs that produce output similar to that of human problem solvers to systems
that mimic both the products and processes of human performance. In this paper,
we describe a model that achieves the next step in this progression: predicting
individual participants’ performance across multiple tasks after estimating a
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intermediate steps taken by the model and those taken by humans tackling the same problems.
Thus, the mode of comparison was generally qualitative (e.g., Do the model’s steps indicate the
same processes used by humans?) rather than quantitative.

Following the successes of these models, researchers in the 1980’s aimed to attain even
more stringent fits to the observed data by getting their models to match quantitative measures
such as accuracy or latency data. For example, Seidenberg and McClelland (1989) implemented
their theory of visual word recognition in the form of a connectionist model and showed that the
model provided a good fit to the data from several experiments.  In this case, the model’s fit was
assessed by correlating a quantitative measure collected in the experiments (reaction time) to a
corresponding but different quantitative measure produced by the model (squared error). A
similar level of model fit was achieved by Anderson’s (1983) activation-based model of the fan
effect.  Here, the model was able to fit participants’ response latencies for various kinds of
memory-verification stimuli.  In these two cases as in others from the 1980’s, the processing
speed of computers available enabled modelers to automatically search the space of free
parameters and present the results from the best fitting parameterization of their model.  Hence,
models of this era were generally evaluated based on their ability to fit a relatively large number
of data points with a fixed number of freely varying parameters; when such models were fitted
across experiments, independent sets of parameters were typically used.

The move toward correlating models’ quantitative predictions with corresponding data
made it much easier to rigorously evaluate the fit of a given model as well as to compare the fit
of different models (e.g., by correlation or goodness-of-fit statistics).  However, with numerous
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Yet another extension to computational modeling that was advanced in the 1990’s
involved developing models within cognitive architectures (e.g., ACT-R: Anderson & Lebiere,
1998; EPIC: Meyer & Kieras, 1997a, 1997b; Soar: Newell, 1990).  A cognitive architecture is a
computational system that specifies a particular way of representing information and a fixed set
of cognitive mechanisms for processing that information. Modeling within a cognitive
architecture provides a different source of constraint—one that does not come from the data to be
fit (as in the extensions presented above) but rather one that is imposed “top down” by the theory
of the given cognitive architecture. Specifically, any model built within a cognitive architecture
must use the same representations and mechanisms regardless of the task being modeled, just as
the brain presumably employs a common set of information-processing mechanisms across a
variety of tasks. What differs across various models built within a given architecture is the task-
specific knowledge with which each task model is endowed.  In sum, the goal of this
“architectural” modeling approach was to develop models of a variety of different tasks under a
single architecture and to show that, while using the same set of information-processing
mechanisms, these models all fit their respective datasets. This goal has been achieved to varying
degrees by researchers working within the cognitive architectures mentioned above.

Although the above modeling accomplishments show enormous progress, there are still
areas where the full potential of computational modeling has not yet been achieved. One such
area involves the modeling of individual differences in cognitive processing, i.e., processing
capabilities that differ among individuals but that are relatively constant within individuals as
they work on a variety of tasks. Just as the human brain allows for the performance of many
tasks using a set of mechanisms that are presumably shared by many individuals, it also allows
for considerable variation among individuals in the quality and speed of task performance.
Computational models need to be able account for both the commonalty among individuals’
processing (e.g., a common set of mechanisms for learning and performance, regardless of the
task or the person) as well as the variation in individuals’ processing (e.g., differences in the
fundamental processing capacities with which these shared mechanisms are run). For example,
cognitive models have not yet been developed that predict the performance of individual
participants across tasks and along multiple dimensions, even though their performance is related
across those tasks. Ideally, such a modeling effort would be able to predict individuals’
performance in a new task with no new free parameters,  presumably after deriving an estimate
of each individual’s processing parameter from previous modeling of other tasks. We take this as
a challenging but feasible goal that may help bring computational models to the next step in their
progression.

Computational Modeling and Working Memory
Working memory is one area of cognitive processing where systematic individual differences
have been found experimentally and where computational models have already made some
progress toward the above goal of predicting individual performance. Working memory is the set
of mechanisms used in human cognition for retrieving and maintaining information during
processing (Baddeley, 1986, 1990). For example, to compute the proper amount to tip in a
restaurant, working memory resources are required to hold the original bill amount and any
intermediate results in memory while working toward the final answer. Because working
memory resources are limited, performance suffers when the working memory demands of a task
exceed the available supply. Indeed, prior research has demonstrated that as the working memory
demands of a task increase, people’s performance on the task decreases (e.g., Anderson &
Jeffries, 1985; Anderson, Reder, & Lebiere, 1996; Baddeley, 1986; Burgess & Hitch, 1992;
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Engle, 1994; Just & Carpenter, 1992; Navon & Gopher, 1979; Salthouse, 1992). Salthouse, for
instance, had participants perform four different tasks at three levels of complexity. He found
that as task complexity increased, performance decreased. Salthouse also found individual
differences in performance such that the decrease in performance with increased task complexity
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and which, in turn, draw on the capabilities of the other components. Working memory
limitations stem from the all-or-none decay of items from the auditory store (with time until
decay being a stochastic function of the similarity among items) and from the articulation rate
attributed to the vocal motor processor. As the vocal motor processor takes the prescribed
amount of time to rehearse a given item (re-adding that item to the auditory store), other items
have a chance to decay (disappearing from the auditory store), thereby producing subsequent
recall errors. This model also accounts for the performance decrease with increased working
memory demands, and it does this within a cognitive architecture.

These models have accounted for a wide range of working memory effects at the group
level (i.e., aggregated across participants). As noted previously, however, individuals differ in
their working memory capacity. These capacity differences can result in very different patterns
of performance by individual. A complete theory of working memory should, therefore, be able
to capture not only aggregate working memory effects but also the differential sensitivities of
individual participants to working memory demands, i.e., the second working memory result
mentioned above. Just and Carpenter (1992) developed a model called 3CAPS that was able to
capture the different patterns of performance in subgroups of participants with low, medium, or
high working memory capacity.  Their model accounted for these differences by assuming
different caps on the total activation propagating through the system,  Thus, the 3CAPS model
accounted for individual differences in working memory capacity at the sub-group level.

An ACT-R Model of Working Memory
In this section, we trace the development of a computational model of working memory built
within the ACT-R architecture. As the current implementation of ACT-R stands (cf. Anderson &
Lebiere, 1998), it already offers an account for the working memory result that participants’
aggregate performance degrades as tasks become more demanding. To account for the other two
critical working memory phenomena, which both deal with individual differences in working
memory, we extend the theory.  Specifically, we posit that the continuously valued parameter W
represents an individual’s working memory capacity. In our extended model, then, the value of
W can be varied to produce the different patterns of performance that are observed for different
individuals, i.e., the second working memory result mentioned above. More importantly,
however, we show that by using the model parameter W as a measure of an individual’s working
memory capacity, we can predict that individual’s performance on a new task without otherwise
tailoring the model. This is an example of the third working memory result from above that
states there is a common working memory resource influencing an individual’s performance
across tasks. Thus, our model satisfies all three requirements of a good working memory model
whil.52nt
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the first position of the current trial.
Retrieval of such a chunk is based on its
total activation level. This level is
determined by the chunk’s base-level
activation (derived from its history of use)
and the amount of source activation it
receives from elements currently in the
focus of attention (representing contextual
effects). Chunk activation is given by:

      Ai = Bi +
W

nj =1

n

∑ Sji

Equation 1
where Ai is the total activation of chunk I, Bi is the base level activation of chunk I, W is the
amount of available source activation (to be discussed in more detail below), and n is the number
of elements in the focus of attention. Each Sji is the strength of association between chunk j in the
focus of attention and chunk i in declarative memory. In Figure 1, S7,i represents the link between
the concept 7 and the memory of seven in the first position of the current trial. As this link
becomes stronger, more source activation will be spread to the memory chunk should seven
become the focus of attention.  This in turn makes it easier to access and use that memory chunk
in processing. In general, a chunk will be more active the more often it is used (increasing Bi)
and the more strongly related it is to items in the focus of attention (higher Sji’s).

The exact value of a chunk’s total activation (AI) is important because it determines the
probability of the chunk being retrieved, as given by the following:

               Probability of retrieving chunk i =
1

1 + e-(A i -τ )/s Equation 2

where Ai is, as before, the total activation of chunk i, τ is the retrieval threshold, and s is a
measure of the noise level affecting chunk activations.

If a chunk’s total activation (plus added noise) is above the threshold τ, the chunk is
retrieved and its latency of retrieval is given by the following:

               Latency to retrieve chunk i = Fe -fA Equation 3
where F and f are constants mapping Ai onto latency.  If the total activation falls below
threshold, the model commits an error of omission. Errors of commission are produced by a
partial matching mechanism that is described in more detail in Anderson and Lebiere (1998).

In recent work, Anderson, Reder, and Lebiere (1996) suggested a computational
approach to working memory within ACT-R that builds on the work of Just and Carpenter
(1992). While Just and Carpenter proposed that the total activation within the cognitive system is
limited, Anderson et al. (1996) suggested that working memory limits occur because source
activation (the parameter W in Equation 1) is limited (see Cantor & Engle, 1993 for a similar
account). Source activation is a type of attentional activation that is divided equally among the
items in the current focus of attention. It spreads from these items to related chunks that are
necessary for task performance and in this way maintains those task-relevant chunks in an
available state relative to the rest of declarative memory. Because the amount of source
activation is limited to the quantity W and because this quantity is divided among the various
items in the current focus of attention, the more items in the focus, the less source activation each
can spread to its related chunks.  For example, increasing the complexity of a task (which
increases the number of items in the focus of attention) implies that each item in the focus of

scurrent,i

sfirst,i

trial

position

current

first

Memory i

item

seven
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Figure 1. Graphic representation of a chunk
encoding the fact that seven was the first item in
the current list.
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attention has a smaller share of source activation to spread to task-relevant chunks. Similarly,
when a person is dividing attention between two concurrent tasks (which places more items in
the focus of attention than would be for either task alone) there will be less source activation
spreading from each item in the focus to task-relevant chunks. In both cases,  the task-relevant
chunks are less activated than they would be in a simple, single task, and so performance suffers
as a result.

Anderson et al. (1996) supported this conceptualization of working memory by
demonstrating that an ACT-R model with a limit on source activation provided a good fit to their
participants’ data. In their study, participants were required to hold a digit span in memory while
solving an equation. Both the size of the span and the complexity of the equations to be solved
were manipulated. Also, half of the equations included extra variables such that participants had
to substitute the first two values from the digit span for these variables before solving. Results
showed that when the equation-solving task was made more complex (i.e., more operations were
required to solve), performance on both tasks decreased.  When the span task was made more
complex (i.e., more digits to hold in memory), performance on both tasks also decreased
whenever the equation required substitution from the digit span.

Extending the ACT-R Theory
Like Anderson et al. (1996), we assume a fixed limit on W from Equation 1. This assumption
accounts for the first of the three characteristics of working memory outlined above, namely, that
working memory resources, represented by W, are inherently limited. Note that a limit on W will
affect the performance of any ACT-R model where task performance relies on retrieval of
declarative chunks.  This is because declarative chunks are influenced by the amount of source
activation (W) spreading from the current focus of attention (Equation 1).

To account for the second working memory phenomenon— that these resources differ in
amount across individuals— we extend the idea of a fixed “cap” on source activation, W.
Specifically, we assume that the limit on W is not the same for each individual, i.e., that different
participants will have different W values. Moreover, we expect that the distribution of these W
values across a population follows a normal distribution centered at 1.0. In this way, different
versions of an ACT-R model can be endowed with different amounts of source activation to
represent different 086 Tw (Spes a16es. Moreover, w1).
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the above effects (e.g., differential sensitivity to working memory demands) across tasks. It is, of
course, possible that an individual’s W will vary with variations in the individual’s level of
interest, degree of practice, or with fatigue, but we take these variations to be smaller than the
variability among individuals.

Testing the Model
In this and the next section, we document how we have tested the above model of working
memory in the context of two particular working memory-dependent tasks. Before doing so,
however, we carefully selected those tasks and then specified the knowledge required for
performing each. This task-specific knowledge was represented in terms of ACT-R’s declarative
chunks and production rules. Then, ACT-R’s general mechanisms—including our extension
regarding how to represent individual differences in working memory—was applied to each task
model in order to generate specific predictions for how participants would perform that task. We
then compared these predictions with the data from our participants, both at the aggregate and
individual level.

Challenges to Modeling Working Memory
Selecting a task that will enable estimation of an individual’s working memory capacity is
challenging because performance on a given task can be affected by a number of other factors,
including prior knowledge of relevant procedures and possession of related facts. A suitable
working memory task should limit the inter-participant variability on these other factors. In
traditional memory span tasks, participants are presented a sequence of stimuli (i.e., digits,
letters, words) one at a time and then are required to repeat the sequence. Successive sequences
are lengthened until the participant can no longer repeat them accurately. Working memory
capacity is taken as the longest sequence that a participant can accurately report. Such tasks,
however, do not allow for very accurate measures of working memory capacity because the use
of compensatory strategies (i.e., chunking, mnemonics) has been shown to differ among
participants, and such differences in strategies can seriously contaminate measures of working
memory capacity derived from such tasks (Turner & Engle, 1989). A further concern is the
influence of task-relevant factual knowledge on performance of such tasks. To cite an extreme
case, Chase and Ericsson (1982) described a participant with a digit span of more than 80 digits
(compared to a normal span of approximately 7 items). This feat was accomplished in part
because the participant, a runner, was able after extensive practice to recode the digits into
groups based on personally meaningful running times. Thus, his super-high memory span has
been mainly attributed to variation in knowledge and experience rather than to variation in
working memory resources alone. In sum, to obtain valid measures of working memory capacity
it is critical that we find tasks that can be completed in only one way and are equally unfamiliar
to all the participants.

One way to deal with the challenge of minimizing differences in compensatory strategies
and prior knowledge is the use of modified span tasks in which participants perform some other
activity concurrently with the test of memory span (e.g., Daneman & Carpenter, 1980; Turner &
Engle, 1989; Yuill, Oakhill, & Parkin, 1989). Modified span tasks put a greater continuous load
on working memory and tend to preclude participants from inventing and using different
strategies that could obscure differences in working memory capacity. Lovett, Reder, and
Lebiere (1999) developed and refined a modified digit span (MODS) task that is a variant of one
developed by Oakhill and her colleagues (e.g., Yuill, Oakhill & Parkin, 1989).
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In the MODS task, each trial consists of a
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parameters to fit the data.  In particular, each simulation had W set at its default value of 1.0.
Figure 3b shows that the model’s performance, averaged over these 20 simulations, follows a
decreasing trend similar to the participants’ aggregate performance data. However, these 20
simulations all had the same W value. To account for the variability in working memory capacity
across participants in the sample, Lovett et al. ran an additional 20 simulations, but this time the
value of W for each run was allowed to vary around the value 1.0. These separate W values for
each simulation were not optimized to the data in any way; they were merely allowed to vary
randomly from run to run. Figure 3c shows that, with these varying W’s, the model’s average
predictions produced an even better fit to the aggregate data. This change in the absolute level of
the predictions occurred because of the nonlinear effects of W on performance: Varying W
across simulation runs changed not only the variability in the model’s performance (notice the
standard error bars in Figure 3c compared to those in 3b) but the absolute level of performance
as well.  Finally, Lovett, et al. were able to fit the data of individual participants  by allowing W
to take on particular values chosen to maximize the fit to individual participants’ performance.
This last result suggests that our model – even when constrained to let only one parameter vary
among participants – is flexible enough to capture individual differences in performance.

In two recent experiments involving the MODS
task, Daily, Lovett, and Reder (1999) have used this same
modeling approach to capture individual differences in
working memory.  Replicating the results of Lovett et al.
(1999), Daily et al. found that running the model with W
varying about the default value of 1.0 produced a good fit
to the aggregate data (Figure 4).  Moreover, by leaving all
parameters fixed except for estimating a best-fitting W
1999) have us2lts an w8 peg W2 406.569 TD 3.477iT6 1.4ho02j
Ee5pus in
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on the MODS task lead to accurate predictions of their individual performance on a second
working memory task (with all other parameters held constant).  This adds to the support for W
as a measure of working memory capacity and offers the first demonstration of modeling
individual differences with a single free parameter within the first task and no free parameters in
the second task.

Issues in Choosing Task #2
The second task we chose for this cross-task prediction of individuals’ performance is the n-back
task (e.g., Braver et al., 1997; Cohen et al, 1994; Gevins, et al., 1996; Gevins, Smith, McEvoy, &
Yu, 1997). In this task, participants are presented with a long sequence of letters and are required
to indicate whether the current letter matches some previous letter in the sequence. For instance,
in a 1-back condition, the participant is told to respond positively when the current letter matches
the immediately preceding letter in the sequence. In a 2-back condition, the participant is told to
respond positively when the current letter matches the second letter before the current one, etc.
Thus, as the number of items “back” increases, the participant must keep track of a greater
number of items in order to respond accurately. In addition, a 0-back condition is often included
in which participants must indicate whether the current letter matches a fixed letter. The usual
finding in the n-back task is that response latency increases and accuracy decreases as memory
load (i.e., the value of “n”) increases (Braver et al., 1997; Cohen et al, 1994).

For our purposes, we collected data from 20 participants performing both the MODS task
(as described earlier) and four conditions of the n-back task (0-back, 1-back, 2-back, and 3-
back). Our modeling approach then involved fitting individual participants’ data from the MODS
task to estimate individual W values and then using these W values to generate individualized
predictions for these same participants’ nback data.

Note that the n-back task is qualitatively different from the MODS task in several
respects. Unlike the MODS task, which requires recall of the memory set items, the n-back task
involves recognition of previously presented items. Further, successful performance of the n-
back task requires continual updating of a stream of to-be-remembered items whereas the MODS
task involves maintenance of a separate list of to-be-remembered items for each trial. Finally, the

Figure 6. Fits to the serial position data for 4
typical subjects (largest set size only). Filled
symbols are subject data, open symbols are the
model's predictions.
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memory load involved in the n-back (three items at most) is somewhat smaller than the load in
the MODS task (varies from 3 to 6 items). Given these differences, our working memory
model’s ability to make cross-task predictions based on a single individual difference parameter
suggests that there is something general about the impact of source activation (W) on
performance.

Perhaps more important than the n-back task’s differences from the MODS task is its
status regarding our two criteria for a suitable working memory task. Our original assumption
was that participants would not differ in terms of prior knowledge relevant to this task nor in the
strategy they used for task performance. To test these assumptions, we included a questionnaire
asking participants how they performed the n-back task.  Participants’ responses suggested that
they were equally unfamiliar with the task, i.e., participants did not differ in relevant prior
knowledge. Contrary to our expectations, however, participants indicated using one of two
qualitatively different strategies. In the first (which we named the activation strategy),
participants responded to each letter based on its familiarity: if the item seemed familiar it was
called a match. The second strategy (which we named the update strategy) involved actively
maintaining a list of the prior letters and updating that list after each letter was presented.
Presumably, working memory resources would not be involved in the first strategy as no
maintenance is involved. These resources would, however, be required for the maintenance and
updating of the lists in the second strategy.  Therefore, we chose to model the nback data from
the update group only by developing an ACT-R model to implement the update strategy.

Empirical Results for Task #2
We divided the participants into two groups based on their
self-reported strategy and compared the performance of the
two groups (see Siegler, 1987). Participants’ proportion
correct as a function of memory load is shown in Figure 7.
These data were entered into a 2 (Group) by 4 (Memory
Load) analysis of variance. The effect of group was
marginally sign9r.eha864ally sign9r.er0s w
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Although this second result is not highly significant, it is still consistent with our expectations.
This is because our working memory model does not predict a stictly linear relationship between
W and performance; rather, the relationship is nonlinear and likely involves the complexity of
both direct and indirect effects.  Thus, some degree of correlation was sufficient encouragement
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additional parameters.This
procedure constitutes a type of
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working memory takes source activation as a general resource whose limits should affect
performance on all sorts of tasks. There are, however, patterns of performance within individuals
that suggest a verbal-spatial distinction.  Working memory models that postulate separate
modality-based resources can account for these results directly.  Instead, we offer a separate,
experience-based explanation based on the idea that different people likely differ in their relative
use of spatial versus verbal information.  According to ACT-R, these differences would be
reflected as different base-level activations (Bi’s in Equation 1). Different base-level activations,
like different values of W, affect performance (via Equations 2 and 3), but the base-level
activation differences can vary systematically across information type whereas an individual’s W
value would have a general effect.  Moreover, the effects of W vary with base-level activations;
when base-level activation is high, the modulating effect of W is small. Conversely, when base-
level activations are low, the effect of W is large. Thus, our view of working memory as a single
resource still admits a variety of modality- and representation-based differences in within-
individual performance.

Other Sources of Individual Differences
It should be emphasized that our arguments regarding individual differences do not claim that
source activation, W, is the only thing that explains differences in people’s performance on
laboratory tasks or on everyday tasks. As noted above, individual differences in prior knowledge
and strategies can significantly influence task performance (Chase & Ericsson, 1982; Ericsson &
Kintsch, 1995). However, we have argued that when those other sources of variability in task
performance are reduced, differences in source activation (our model’s representation of working
memory capacity) can largely explain differences in an individual’s task performance. We have
taken two approaches to reducing the influence of prior knowledge and strategies. The first
approach, used in the MODS task, involves designing the task in such a way as to use knowledge
presumed to be constant across participants and to eliminate the use of all but the most
rudimentary strategy. The second approach, adopted for the n-back task, used participants’ self-
reports to determine which strategy a participant used and to include in our modeling only those
participants who used a common working memory dependent strategy. The fact that W was able
to accurately capture different patterns of performance in both of these tasks provides converging
evidence that we were able to reduce other sources of variation, thereby highlighting the effects
of individual differences in working memory capacity.

Conclusions
In describing working memory phenomena, we identified three important characteristics that any
computational model of working memory must be able to produce: (i) working memory
resources limit performance on highly demanding tasks, (ii) working memory resources differ in
amount across individuals, and (iii) these differences help predict individuals’ performance
across different tasks. Our source activation theory possesses all of these characteristics and
accurately captures working memory effects at both the aggregate and individual levels. We
believe, therefore, that it provides a workable account of individual differences in working
memory capacity. Though previous research has highlighted that individual differences exist,
these differences have not been modeled at the level of the individual participant nor has the
performance of a participant on one task been used to provide fine-grained predictions of that
participant’s performance on another task. That we were able to do so speaks to the power of our
approach and to the generality of the ACT-R architecture.

In terms of computational modeling more generally, our approach parallels that of other,
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current efforts by achieving the following: (1) fitting aggregate data with multiple measures
(generally with global parameter values taken from previous work), (2) accounting for the
variability of the aggregate data (by varying only one model parameter to account for the range
in participant performance), and (3) matching the performance patterns of individual participants
(by estimating a single W value per participant we account for the fact that performance drops
off under increased load more quickly for low W than for high W participants). Moreover, we
have accomplished this with the additional constraints of (4) building our models within a
cognitive architecture and (5) varying relatively few parameters to achieve our model fits. Most
importantly, however, we have also demonstrated the ability of our model to (6) predict
individual participants’ performance across tasks using a single parameter estimated from one
task to predict performance on the second. This is the first such demonstration of these
capabilities and strongly suggests that computational models may be fruitfully employed in the
investigation of individual differences.
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