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The role of the medial temporal lobe (MTL) in associative memory
encoding has been the focus of many memory experiments.
However, there has been surprisingly little investigation of whether
the contributions of different MTL subregions (amygdala, hippo-
campus [HPC], parahippocampal [PHc], perirhinal cortex [PRc], and
temporal polar cortex [TPc]) shift across multiple presentations
during associative encoding. We examined this issue using event-
related functional magnetic resonance imaging and a multivoxel
pattern classification analysis. Subjects performed a visual search
task, becoming faster with practice to locate objects whose
locations were held constant across trials. The classification
analysis implicated right HPC and amygdala early in the task when
the speed-up from trial to trial was greatest. The same analysis
implicated right PRc and TPc late in learning when speed-up was
minimal. These results suggest that associative encoding relies
on complex patterns of neural activity in MTL that cannot be
expressed by simple increases or decreases of blood oxygenation
level—dependent signal during learning. Involvement of MTL
subregions during encoding of object--location associations
depends on the nature of the learning phase. Right HPC and
amygdala support active integration of object and location
information, while right PRc and TPc are involved when object
and spatial representations become unitized into a single
representation.

Keywords: associative memory encoding, fMRI, multivoxel pattern
classification, medial temporal lobe, object--location associations

Introduction

Modern theories of the medial temporal lobe functioning are in

agreement that the hippocampus (HPC) is critical for learning

of new associations. The HPC binds together distinct pieces of

information to form relational representations that are domain

general and flexible in nature (e.g., Norman and O’Reilly 2003;

Davachi 2006; Diana et al. 2007; Eichenbaum et al. 2007; Squire

et al. 2007; Henke 2010). The role of amygdala in binding is not
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examine ‘‘the statistical relationship between patterns of brain

activity and the occurrence of particular experimental con-

ditions’’ (O’Toole et al. 2007, p. 1736). They are more sensitive

to the changes in neural activity than the standard univariate

methods (e.g., GLM [General Linear Model]) in that they can

pick up differences among experimental conditions even when

GLM cannot (Diana et al. 2008). This is especially important

for studies of HPC, the region that is often difficult to image

due to an inherent low signal-to-noise ratio (Greicius et al.

2003; Zeineh et al. 2003).

Hippocampal encoding is usually rapid (e.g., Nakazawa et al. 2004;

Bast 2007). Some types of associative encoding (e.g., object--color

associations) that engage PRc may also occur in one trial (e.g.,

Staresina and Davachi 2008). However, other studies indicate that

cortical MTL subregions are often engaged over the course of

learning (Aminoff et al. 2007; Yassa and Stark 2008; Voss et al. 2009).

For example, Voss et al. (2009) compared repeated words (5

repetitions before scanning and 4 presentations in the scanner) to

new words and found robust positive correlation between the

magnitude of behavioral priming and repetition-related reduction in

left PRc. Aminoff et al. (2007)
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objects. Thus, if an object ‘‘A’’ appeared in the locations ‘‘a,’’ ‘‘b,’’ and ‘‘c’’

as a target, it could never appear in locations ‘‘d’’ or ‘‘e’’ as a distractor.

For each block, 3 ‘‘constant’’ and 5 ‘‘variable’’ objects served as targets

with the constraint that no object was repeated as a target within

a block.

Order of trials within the block as well as the order of the blocks was

randomly determined for each subject. Over the course of the

experiment, each ‘‘constant’’ object was the target 6 times and each

‘‘variable’’ object was the target 4--12 times. The 8 objects belonging

to the variable condition appeared twice in each location. These

objects were seen as targets different numbers of times. Two objects

appeared as a target 12 times (20% of variable trials), 3 objects appeared

as a target 4 times (6.7% of variable trials), and the other 3 objects

served as a target on 10, 8, and 6 trials (16.7%, 13.3%, and 10% of

variable trials, respectively). This manipulation allowed us to use all

6 variable locations with equal frequency (10 times each) but still vary

the display appearance. By manipulating the locations and the presence

of variable objects, we made the constant object--location associations

less obvious to the subjects. Subjects were neither instructed that

some of the object--location pairings would be repeated nor they

were informed that they would be tested later on their memory for

object--location associations.

Image Acquisition
The event-related fMRI data were acquired using a Siemens 3-T Allegra

head-only MR system. At the beginning of the experiment, a high-

resolution structural image (time repetition [TR] = 2000 ms, time echo

[TE] = 4.38 ms, slice thickness = 1 mm, field of view [FOV] = 220,

number of slices = 176, resolution = 0.8594 3 0.8594 3 1) was acquired

using a magnetization prepared rapid gradient echo (MP-RAGE)

sequence. Functional data (blood oxygenation level—dependent [BOLD]

signal) were collected using a gradient echo, echo-planar sequence

(TR = 2000 ms, TE = 30 ms, slice thickness = 4 mm, FOV = 220, number

of slices = 32, resolution = 3.4375 3 3.4375 3 4.0). A total of 800 volumes

were collected during the search task.

fMRI Data Analysis
The images were preprocessed and analyzed with FSL 4.1.5 (FMRIB’s

Software Library, www.fmrib.ox.ac.uk/fsl software. For each raw BOLD

data set, we applied nonlinear noise reduction (smallest univalue

segment assimilating nucleus), motion correction (MCFLIRT [Jenkinson

et al. 2002]), nonbrain removal using BET (Smith 2002), spatial

smoothing using a Gaussian kernel of full-width at half-maximum

(FWHM) 9 mm, multiplicative mean intensity normalization of the

volume at each time point, and high-pass temporal filtering (Gaussian-

weighted least-squares straight line fitting, with sigma = 25.0 s).

A hemodynamic response function was modeled using a Gamma

function.

The 2-stage registration of the low-resolution BOLD images to

standard Montreal Neurological Institute (MNI) template was carried

out using FLIRT (FMRIB’s Linear Image Registration Tool; Jenkinson

and Smith 2001; Jenkinson et al. 2002) using the following parameters:

a 9-DOF parameter model, normal search (±90�), a correlation ratio cost

function and trilinear interpolation. First, BOLD images were registered

to the high-resolution structural (MPRAGE) images. Second, the high-

resolution images were registered to the MNI152_T1_2mm template.

Finally, the 2 resulting transformations were concatenated and applied

to the original BOLD image (http://www.fmrib.ox.ac.uk/fsl/flirt/

gui.html) to transform it to the MNI space.

A GLM analysis with target types (constant object location, variable

object location, etc.) and target repetitions (presentation 1, pre-

sentation 2, etc.) as explanatory variables was conducted using FEAT

(FMRI Expert Analysis Tool). The length of each event (or trial) for

a GLM model was calculated as 2 s (target presentation) + 1 s

(interstimulus interval) + search RT [Response Time]. The first-level

analysis contrasted 2 consecutive presentations for each subject

(presentation 1 vs. presentation 2, presentation 2 vs. presentation 3,

etc.). Group means for each contrast of interest were computed using

ordinary least square mixed effects. Z-statistic images were thresholded

at P < 0.005 (voxel-wise, uncorrected). While we conducted the

whole-brain GLM analyses, we were only interested in the activations

pertaining to the regions of interest (ROIs). Therefore, a corrected

threshold for each cluster (i.e., P
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the sensitivity of the classifier to sparse feature selection. All classifiers

were implemented using the multivariate pattern analysis in python

software http://www.pymvpa.org; Hanke, Halchenko, Sederberg, Han-

son, et al. 2009; Hanke, Halchenko, Sederberg, Olivetti, et al. 2009).

Monte Carlo simulation with 5000 replications (Schaffera and Kima

2007) using R statistical package (http://www.r-project.org/) indicated

that classification accuracy should be at or above 80% to be considered

significant.

SMLR And Nested Cross-Validation

Feature selection is an important step in a classification procedure (e.g.,

Haxby et al. 2001; Hanson et al. 2004). The SMLR classifier allows

optimizing for the number of features in the data set by adjusting the lm

parameter (Krishnapuram et al. 2005). Such adjustment (or ‘‘tuning’’)

may result in a bias in error estimation and, consequently, in poor

generalizability of results (Varma and Simon 2006). To avoid this bias,

we used a 2-level nested cross-validation (CV) method. Nested CV is an

unbiased procedure to select the optimization parameters for a classifier

(in the case of SMLR—the number of features in the data set). Every

time a classifier is optimized, there is the danger that the ‘‘best’’

performance is due to chance and that it is specific to a subset of

subjects. Nested CV helps to avoid this by first pulling out one subject

successively for a global validation test. In our case, we created 10 data

sets involving 10 – 1 = 9 subjects in each training data set, with

a different subject removed for each one. These training sets are then

split again to optimize the number of selected voxels. We refer to this

first level of CV as the ‘‘inner loop.’’ The second level of CV, referred to

here as the ‘‘outer loop,’’ was used to compute an estimate of an error.

The best classification parameter selected through the nested CV

procedure is used in the training on the full training data set and is

tested against the global test subjects.

In the inner loop, we used 10 subsets of 9 subjects taken from a total

set of 10. The SMLR classifier was trained on 8 subjects and tested on 1.

Eight optimization parameters (lm = 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1,

2; a smaller lm parameter corresponds to a larger number of features

left in the data set) were examined for each ROI for each comparison

condition. The classification accuracies and a number of features in the

model were then averaged across 10 subsets of data separately for each

lm parameter (see Supplementary material). The lm parameter with the

highest average classification accuracy and the largest average number

of features (voxels) left in the data set was chosen as the best

parameter and was used to estimate the classification error in the outer

loop. The outer loop SMLR used all 10 subjects. The classifier was

trained on 9 subjects and tested on 1 (using a leave-one-out CV

approach). It was repeated for each ROI for each comparison

condition.

Results

Behavioral

Figure 2 plots the mean RT for each successive trial as a function

of whether the trials were constant or variable object--location

pairs. Subjects were able to locate the target object on the first

trial 96% of the time. Only these correct trials were used for the

analyses of search RT and fMRI data. Consistent with previous

findings (Musen 1996; Manelis et al. 2011), search RTs became

faster with successive repetitions of a target provided that it

appeared in fixed spatial location, F5,45 = 9.2, P < 0.001; however,

when a target was repeated in variable locations, the RTs did not

differ across repetitions, P > 0.1. The decrease in search RT

across the 6 presentations of an object in a constant location was

best fit by a power function, y = 1557.5 3 x
–0.3, R-square = 0.97

(Anderson 1982; Logan 1988).

Classification Analysis of Neuroimaging Data

The best optimization parameter for SMLR was selected based

on the results of nested CV (for more details, see Tables S1--S5

in Supplementary Data). This parameter defined the sparseness

of the SMLR classifier (i.e., the number of features in the data

set). Please note that the same features that were selected for

SMLR were also used for SVM (i.e., SVM on SMLR features).

Another SVM classifier was run on the full data set. Figure 3

displays the training and cross-validation accuracy (ACC) for

SMLR and SVM classifiers. CV accuracies in all ROIs for all

conditions of interest are also presented in Table S6 in

Supplementary Data. The training accuracy for classifiers that

were run on different comparison conditions for different ROIs
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from the second presentation. This result was replicated using
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amygdala (47%) (The number in the parenthesis refers to

a probability of a peak voxel in the cluster to be located in the

ROI according to the Harvard-Oxford cortical and subcortical

structural probability atlases.), right PRc (32%) and right HPC

(15%) with a peak activation at (22, –2, –28), z = 2.78, Pcorrected

< 0.05. (Please note that we computed Pcorrected using the right

amygdala as a mask in the AlphaSim program because the

probability of a peak voxel to be in the right amygdala was the

largest and the closest to 50% threshold.) There was less

activation on the fifth relative to the sixth presentation of

constant pairings in the right amygdala (63%) ([18, –6, –20], z =
3.66, number of voxels = 16). Less activation on the second

relative to the third presentation of constant associations was

observed in the left HPC (58%) ([–28, –32, –12], z = 2.91,

number of voxels = 16, Pcorrected < 0.05). Finally, right TPc

(69%) showed less activation on Presentation 4 compared with

Presentation 5 ([30, 18, –32], z = 2.86, number of voxels = 10,

Pcorrected > 0.1). Given that the Pcorrected is greater than

a conventional a < 0.05, which increases the probability of

a false detection, we will not discuss this result further in the

manuscript.

Bold Signal Changes In The Voxels Diagnostic For A Specific

Condition

Classifiers provided us with the diagnostic sensitivity to

a particular classification condition in each voxel. These

positive and negative sensitivities (positive were pertaining

the one classification condition and negative were pertain-

ing to another) computed by the SMLR classifier were used

to test whether voxels that were differentially sensitive to

each of comparison conditions during classification would

show distinct increase/decrease patterns for these condi-

tions (Fig. 4B).

A two-way analysis of variance with repetition and sensitivity

directionality as repeated measures was conducted on BOLD

signal changes for the first versus second presentations in right

HPC and right amygdala and for the fifth versus sixth

presentations in right PRc. We found no significant main

effects but a significant interaction between stimulus repetition

and SMLR sensitivity for a given condition (right HPC: F1,9 =
18.0, P < 0.005, right amygdala: F1,9 = 9.5, P < 0.05, right PRc:

F1,9 = 43.2, P < 0.001, right TPc: F1,9 = 19.9, P < 0.005). In right

HPC, voxels that were diagnostic for the first presentation of

object--location associations decreased neural response to the

second, relative to the first presentation. In contrast, voxels

that were diagnostic for the second presentation increased
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significantly increases its activation from Presentation 5 to

Presentation 6. In light of Rutishauser et al. (2006) findings, the

increase in activation later in learning may indicate that the

object--location associations became sufficiently familiar to the

subjects by the sixth presentation. It is noteworthy that the

classification analyses provided some additional support for this

interpretation: SVM on SMLR features was able to distinguish

Presentations 5 and 6 in the right amygdala with 70% accuracy

which is nominally above chance but below the significance

level.

Poor generalization performance does not mean that a region

is not involved in learning of object--location associations

(especially if a univariate method of analysis shows that it is

involved), but it may mean that the patterns of neural activity

differ across subjects. If so, then this variation precludes the

classifier from finding common patterns of neural activity for

a specific classification condition. Arguably, between-subject

variability may be one reason for the nonsignificant classifica-

tion result in the right amygdala late in learning. The same

argument may be applied to the left HPC where the GLM

detected significant change in the BOLD activation but the

classification accuracy was not significantly above chance (65--

70%).

Parahippocampal Cortex

Multiple studies have demonstrated the role of PHc in

processing of spatial information (e.g., Epstein and Kanwisher

1998; Bohbot et al. 2000; Ploner et al. 2000) and, specifically,

object--location associations (e.g., Sommer et al. 2005). There-

fore, it was surprising to find that the PHc was not involved in

this study. One difference between our study and that of

Sommer et al. (2005) is that our subjects learned these pairings

incidentally while their subjects were required to intentionally

learn object--location associations. Conceivably, the intentional

learning of object--location associations requires more PHc

processing that incidental binding.

Another explanation for the difference in findings is that our

multivariate method involved finding patterns of activation that

were not only diagnostic for comparison conditions but also

common across all subjects. Therefore, if activation patterns

from trial to trial in PHc are not in sync across subjects, there

will be poor generalization performance of the classifiers. Some

support for this view comes from our finding that, during the

early stages of learning, classification accuracy in PHc was 65--

70%, which is nominally above chance (50%) but below our

80% threshold.

Perirhinal Cortex

Recent studies suggest that the PRc may be involved in

association of intraitem elements of a stimulus (e.g., Staresina

and Davachi 2008) and object--object associations (Pihlajamäki

et al. 2003). Here, we provide further evidence that the PRc

plays a role in associative encoding but suggest that this

encoding need not be limited to within-domain associations.

While our findings implicated both HPC and PRc in associative
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significantly slowed when they were presented in new
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