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Spatial auditory cues are not a dominant factor in human auditory scene analysis (i.e., in
“parsing” the sound reaching the ears to determine the number and spectral content of competing
sound sources) [1-5]. However, spatial hearing is very important for understanding a target
source in an environment that has multiple sound sources [6-9]. Resolving this apparent paradox
is critical for understanding how human listeners operate in difficult conditions, for instance when
there is a heavy workload and there are competing demands on attention. Such knowledge is
very important for designing effective auditory displays and other human-machine interfaces.

Traditional views of the benefits of spatial hearing [10] fail to explain this contradiction as well
as other observations, such as the 1) relatively poor ability of hearing impaired listeners to parse
and understand speech in situations with competing sources and/or reverberation [11], 2)
relatively large inter-subject differences in performance on tasks involving “informational masking”
compared to tasks in which the masker is dissimilar from the target [11-13], and 3) very large
improvements in speech intelligibility that can arise when similar competing talkers arise from
different locations compared to when they are in the same location [6-9, 14, 15]. This short paper
provides a preliminary conceptual framework that unifies these seemingly contradictory results by
isolating and identifying multiple ways in which spatial hearing impacts the ability to listen to
competing, simultaneous sound sources.

It has long been known that spatial separation of a target from an interfering source (a
masker) improves a listener’s ability to detect and understand the content of the target (a
phenomenon known as “spatial unmasking;” e.g., see [16-18]; recent reviews include [10, 19]).
Much of this improvement can be attributed to simple acoustic effects: spatially separating the
target and masker generally increases the target-to-masker energy ratio (TMR) at one of the two
ears. Because speech intelligibility improves with TMR, the improvement in TMR in one ear leads
directly to an improvement in performance. The acoustic TMR varies with frequency because the
acoustic interaction of the head and body of the listener with an impinging sound wave varies with
the sound wavelength. Thus, the TMR changes more with spatial location of target and masker at
high frequencies than at low frequencies. In the most extreme cases (i.e., when one of the
sources is 
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attending to these components in the face of the masker competition. Under these
circumstances, perceived differences in the locations of target and masker can improve the ability
to attend to and understand the target message [6-9, 11, 23, 24]. In fact, in these situations,
spatial separation can cause extraordinarily large changes in performance that even exceed the
effects that have been the focus of traditional study (i.e., changes in the acoustic TMR and the
effective TMR). Recent work suggests that this form of spatial hearing advantage arises because
a listener can selectively attend to a source from a particular location and ignore a competing
source from a different direction.

One final factor that has a large impact on spatial hearing advantages in typical environments
is the effect of room acoustics [21, 25-29]. Echoes and reverberation alter nearly all acoustics
aspects of the signals reaching the ears (spectro-temporal properties, TMR, binaural cues). As a
result, the importance of spatial hearing for spatial unmasking differs in “everyday” environments
compared to the anechoic conditions under which many psychophysical tests have been
performed. Reverberation and echoes degrade spatial unmasking advantages for many
traditional test conditions, but are less detrimental on tasks that involve similar-quality,
simultaneous talkers and spatial attention. Further, while existing binaural processing models
predict spatial unmasking under certain circumstances (e.g., a speech target in the presence of a
steady-state, noise masker in anechoic space), they cannot account for the effects of
reverberation on speech intelligibility or spatial unmasking.

In order to gain insight into how spatial hearing influences task performance in everyday listening
conditions, it is helpful to consider how sound is processed in the auditory system. The spatial
auditory pathway is organized in a very hierarchical manner. Even a cursory consideration of its
structure suggests that spatial hearing may influence auditory processing at many different
stages of processing, and that the importance of spatial hearing for a particular task depends on
the nature of the stimuli being presented and the task being performed. The figure above
presents our conceptual framework for understanding how spatial hearing influences the ability to
listen to a target in the presence of a masking source.

Spatial separation first influences the acoustic TMR through physical interactions, external to
the listener (1). Acoustic information is then analyzed neurally to extract spectro-temporal content
in the monaural signals reaching the ears (2). This information is processed binaurally in the
brainstem (3). We hypothesize that this low-level binaural processing provides information to two
parallel processing stages. In one stage, spectro-temporal content of the signals reaching the
listener are grouped into acoustic objects by combining spectro-temporal features of the signals
reaching the ears (4). We believe binaural processing contributes to this process by revealing
spectro-temporal features of a masked signal that may not be audible in a monaural
representation (3)-(4). In the grouping stage (4), cues such as harmonicity, common onset, and
other features determine how auditory objects are formed. The resulting grouping rules in turn
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