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Modal analysis of a rectangular room requires evaluation of the eigenvalues of the Helmholtz
operator while taking into account the boundary conditions imposed on the walls of the room. When
the walls have finite impedances, the acoustic eigenvalue equation becomes complicated and a
numerical method that can find all roots within a given interval is required to solve it. In this study,
the interval Newton/generalized bisection �IN/GB� method is adopted for solving this problem. For
an efficient implementation of this method, bounds are derived for the acoustic eigenvalues and their
asymptotic behavior explored. The accuracy of the IN/GB method is verified for a canonical
problem by comparing the modal solution with the corresponding finite element solution.
Furthermore, reverberation times estimated using the IN/GB method are compared to
those calculated using the finite difference method. Through these examples, it is demonstrated
that the IN/GB method provides a useful and efficient approach for estimating the
acoustic responses of rectangular rooms with finite wall impedances. © 2005 Acoustical Society of
America. �DOI: 10.1121/1.2114607�
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I. INTRODUCTION

Modal analysis is a classical method for solving prob-
lems in room acoustics �see, for example, Refs. 1–5�. Using
this method, once all the normal modes are known, the
acoustic pressure distribution for an arbitrary sound source in
a room can be easily computed. Although the modal theory
of room acoustics was established and fully formulated over
a half century ago,1 it is still incomplete in the sense that
there is no well-developed, general method for finding eigen-
values that correspond to room modes for walls with arbi-
trary impedances. Only for rooms with perfectly or nearly
rigid walls or rooms with the same impedance on each pair
of parallel walls are the eigenvalues or their approximations
easy to evaluate. Hence, only these cases have typically been
considered in the acoustics literature.1–6 However, the effect
of finite wall impedances on quantities of interest, such as
the reverberation time, is of general interest and important
for real-world proT.dr.esos2t2bedan.esos2t2[(trn.esos2t25(issos
 issos2t2neerld)-396.[(for)-396.anor)-396.effi-nt
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The remainder of this paper is organized as follows. In
Sec. II, we derive the acoustic eigenvalue equation. In Sec.
III, we discuss the application of the IN/GB method to the
acoustic eigenvalue problem. In particular, we derive limits
and approximations of eigenvalues that yield “good” initial
guesses for intervals used in this method. These limits and
approximations are useful not only for efficient implementa-
tion of the IN/GB method, but find more general applica-
tions. The subsequent sections describe three numerical ex-
periments. In Sec. IV, we evaluate acoustic eigenvalues using
the IN/GB method for a one-dimensional problem. In Sec. V,
we evaluate the modal solution for a point source problem
and compare our results with a benchmark solution obtained
using the finite element method �FEM�. In Sec. VI, we esti-
mate room reverberation times using the acoustic eigenval-
ues, and compare our results with calculations using the
finite-difference time-domain �FDTD� method.13 We make
concluding remarks in Sec. VII. In the Appendices, we re-
view interval arithmetic first, and then describe the IN/BG
method for single and multiple variable problems, of which
the latter is required for solving the acoustic eigenvalue
equation.

II. ACOUSTIC EIGENVALUE EQUATIONS

Normal modes of a rectangular room are obtained by
solving the homogeneous Helmholtz �reduced wave� equa-
tion. For a room with uniform impedance on each of its
walls, the three-dimensional homogeneous Helmholtz prob-
lem for the acoustic pressure p�x ,y ,z� is described as

− �2p − k2p = 0, in � , �1�

�p · n = − i
�c

Zj
kp = − i� jkp, on � j , �2�

where � is the entire space of the room, � j is the jth wall
whose impedance is denoted by Zj, i is the imaginary unit,
k=� /c is the driving wave number with angular frequency
�, c is the speed of sound, n is the outward normal unit
vector on the walls, � is the density of the medium inside
the room, and � j=�c /Zj are the specific acoustic admit-
tances of the walls. Figure 1 shows the coordinate system
used for this problem. The domain is �= �0,Lx�� �0,Ly�

� �0,Lz�.
The solution of this homogeneous Helmholtz problem
can be obtained by the separation of variables.1–5 Exponen-
tials are chosen as the eigenfunctions in this study; for ex-
ample, the eigenfunction in the x direction is given in the
form

�x�x� = Aeikxx + Be−ikxx, �3�

where kx �which is generally a complex value� is the eigen-
value in the x direction, and A and B are complex constants.
After applying Eq. �3� to the boundary conditions Eqs. �2� at
x=0 and x=Lx, the lth eigenfunction in the x direction is
obtained as

�xl�x� = �kxl + �1k�eikxlx + �kxl − �1k�e−ikxlx, �4�

where �1 is the specific acoustic admittance at x=0. kxl is the
lth root of kx for the following acoustic eigenvalue equa-
tion:
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Substituting the perturbation expansion of � in Eq. �10� into
Eqs. �13� and �14� and focusing on the terms of O��0� shows
that

��0
2 − 1��e−2k̂xILx cos�2k̂xRLx� − 1� + 2�0e

−2k̂xILx sin�2k̂xRLx�

= 0, �15�

2�0�e−2k̂xILx cos�2k̂xRLx� − 1� − ��0
2 − 1�e−2k̂xILx sin�2k̂xRLx�

= 0. �16�

The elimination of �0
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x
�xl = �
0

Lx

�xl
2 dx �25�

=2Lx�kxl
2 − ��1k�2� −

i

2kxl
��kxl + �1k�2�ei2kxlLx − 1�

− �kxl − �1k�2�e−i2kxlLx − 1�� . �26�

Note that in Eq. �24�, �xl is multiplied by �xl�, and not by the
complex conjugate of �xl�. This orthogonality can be proven
by explicitly evaluating the integral in Eq. �24� and using the
fact that kxl satisfy the corresponding acoustic eigenvalue
equation, Eq. �5�. The eigenfunction is normalized as

�xl�x� =
�xl�x�
��xl

. �27�

The modal solution is represented in terms of the orthonor-
mal eigenfunctions as

p�x,y� = 

l=1

� �24p24k,



l=1

�

�2x



evaluate tradeoff between the accuracy of the modal solution
and the number of terms included in the summation, and the
IN/GB method can be used to find acoustic eigenvalues with
whatever precision is desirable or necessary.

VI. NUMERICAL EXPERIMENT 3: ROOM
REVERBERATION TIMES

As another example application of finding acoustic ei-
genvalues using the IN/GB approach, room reverberation
times were calculated for three-dimensional rectangular
rooms and then compared with the results obtained from the
finite-difference time-domain �FDTD� method reported by
Yasuda et al. in Ref. 13. The width and the depth of the room
were Lx=24 m, Ly=12 m, respectively, and the height was
either Lz=3 m or Lz=6 m. An absorber with absorption co-
efficient �=0.5 was installed either only at z=0 or both at
z=0 and z=Lz. All other walls were assumed to have �
=0.05. The corresponding specific acoustic impedances were
all given as real values, i.e.,

Z

�c
=

1 + �1 − �

1 − �1 − �
. �37�

For these conditions, the reverberation times in 1/3 octave
bands were calculated using the eigenvalues obtained by the
IN/GB method.

In order to estimate the reverberation times, the collec-
tive modal decay curves were first obtained by

�p2���f ,t� = 10 log

�f
e−2kNIt/kNI


�f
1/kNI

�, in dB, �38�

where t is time, N is a trio of l, m, and n �the mode numbers
in the x, y, and z directions, respectively�, kNI is the damping
constant �the imaginary part of the eigenvalue kN�, and the
summation is over all eigenvalues whose eigenfrequencies
�real parts of kN� are within the band �f .7,18 Although this

decay curve is not exact, it roughly characterizes the energy
decay with time in a given frequency band. Figure 6 shows
the decay curves obtained from Eq. �38� in 1 /3 octave bands
for all height and absorber configuration conditions men-
tioned above. The driving wave numbers k were set such that
they correspond to the center frequencies of the 1/3 octave
bands.

The reverberation times T60 were obtained from the
modal decay curve, Fig. 6, and are plotted in Fig. 7 along
with the reverberation times computed in Ref. 13, which
used the FDTD approach to solve the same problem. A com-
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x�n� = m�X�n�� , �C4�

N�x�n�,X�n�� = x�n� −
f�x�n��
f��X�n��

, �C5�

X�n+1� = X�n� � N�x�n�,X�n�� , �C6�

where m�X� is the midpoint of X, calculated for X= �x� ,x
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