Basic Examination Sample Measure and Integration

Solve three of the following problems.

- 1. State and prove Egoro¤'s theorem.
- 2. Let $E \subset$ be a Lebesgue measurable set with $\mathcal{L}^1(E) > 0$. Prove that for every $0 < t < \mathcal{L}^1(E)$ there exists a Lebesgue measurable subset $F \subset E$ such that $\mathcal{L}^1(F) = t$.
- 3. Consider the function

$$F(y) = \int_0^1 \frac{e^{-yx}}{1+x^2} dx; \quad y \ge 0:$$

- (a) Prove that **F** is continuous.
- (b) Prove that F is dixerentiable for y > 0.
- (c) Prove that \mathbf{F}^{0} is dimerentiable for $\mathbf{y} > 0$.
- (d) Prove that $\mathbf{F}^{00}(\mathbf{y}) + \mathbf{F}(\mathbf{y}) = \frac{1}{V}$ for all $\mathbf{y} > 0$.
- 4. Let ${\bf f}: o$ be a dimerentiable function. Assume that there exists ${\bf M} \geq 0$ such that

$$|\mathbf{f}^{\theta}(\mathbf{x})| \leq \mathbf{M}$$

for all $x \in [a; b]$ for some a < b.

- (a) Prove that \mathbf{f}^0 is Borel measurable.
- (b) Prove that

