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1. (i) State the Closed Graph Theorem.

Let (X; jj � jjX) and (Y; jj � jjY ) be Banach spaces.
(ii) Let T : X ! Y be a linear and continuous operator such that Range(T )

is closed. Prove that there exists C > 0 such that for every y 2 T (X) there
exists x 2 X such that

y = T (x) and jjxjjX � CjjyjjY :

(iii) Let T : X ! Y be a linear operator such that for every sequence
fxng � X

jjxnjjX ! 0) T (xn) * 0 in �(Y; Y 0):

Prove that T is continuous, i.e., T 2 L(X;Y ).

2. Prove that if (X; jj � jj) is a normed space over R such that X 0 is separable,
then X is also separable.

3. (i) State and prove the Banach-Steinhaus Theorem for normed spaces.
(ii) Let (X; jj � jjX) be a Banach space over R and let Ln; L 2 X 0; n 2 N, be

such that Ln
?
* L. Prove that

jjLjjX0 � lim inf
n!1

jjLnjjX0 < +1:

4. (i) Give the de�nition of a compact operator between two normed spaces.

(ii) Let (X; jj � jjX) and (Y; jj � jjY ) be normed spaces, and let T : X ! Y be
a linear compact operator. Prove that T ? is also compact.
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