Department of Mathematical Sciences Carnegie Mellon University

Functional Analysis

Sample Exam

Do any 4 of the following 6 problems. All problems carry equal weight.

1. (a) Let X be a Banach space, Y be a normed linear space, and $\{T_n\}_{n=1}^{\infty}$ be a sequence of bounded linear mappings from X to Y satisfying

$$\forall \mathbf{x} \in \mathbf{X}, \quad \sup\{\|\mathbf{T}_n\mathbf{x}\| : \mathbf{n} \in \mathbf{N}\} < \infty.$$

Prove that

$$\sup\{\|\mathsf{T}_n\|:\mathsf{n}\in\mathsf{N}\}<\infty.$$

(Do not simply quote the Banach-Steinhaus Theorem (aka the Principle of Uniform Boundedness). You are being asked to prove that theorem.)

(b) Give an example of a normed linear space X, a Banach space Y, and a sequence $\{T_n\}_{n=1}^{\infty}$ of bounded linear mappings from X to Y satisfying

$$\forall \mathbf{x} \in \mathbf{X}, \quad \sup\{\|\mathbf{T}_n\mathbf{x}\| : \mathbf{n} \in \mathbf{N}\} < \infty$$

but

$$\sup\{\|\mathsf{T}_n\|:\mathsf{n}\in\mathsf{N}\}=\infty.$$

2. (a) Let X be a reflexive Banach space and let $\{K_n\}_{n=1}^{\infty}$ be a sequence of bounded subsets of X

- 4. (a) State the Open Mapping Theorem and the Closed Graph Theorem.
 - (b) Use the Open Mapping Theorem to Prove the Closed Graph Theorem.
 - (c) Let X,Y,Z be Banach spaces and $U:X\to Y,V:Y\to Z$ be linear mappings and define $T:X\to Z$ by Tx=VUx for all $x\in X$. Assume that T is continuous and that V is continuous and injective. Prove that U is continuous.
- (a) Let X be a Banach space and T : X → X be a linear mapping such that T² = T. Show that T is continuous if and only if the null space and range of T both are closed.
 - (b) Let X, Y be Banach spaces and put

$$\mathcal{O} = \{ T \in \mathcal{L}(X;Y) : T^*[Y^*] = X^* \}.$$

Show that \mathcal{O} is an open subset of $\mathcal{L}(X;Y)$ (equipped with the operator norm). Here $\mathcal{L}(X;Y)$ is the set of all bounded linear mappings from X to Y, X^* and Y^* are the (topological) duals of X and Y, and $Y^* \in \mathcal{L}(Y^*;X^*)$

