DEPARTMENT OF MATHEMATICAL SCIENCES CARNEGIE MELLON UNIVERSITY

BASIC EXAMINATION GENERAL TOPOLOGY AUGUST 2017

Time allowed: 3 hours.

Name:

Problem	Points
1 (20)	
2 (20)	
3 (20)	
4 (20)	
5 (20)	
Total (100)	

1. Consider the following topological space. Let I = [0, 1] and let $X = I = f_1, 2g$. Let

Here B(x; r) is the interval $(x - r; x + r) \setminus I$. We note that *B* is a basis of topology; call it . Show that

- (i) (X_{i}^{*}) is compact.
- (ii) (X_{i}^{*}) is normal.
- (iii) $(X; \cdot)$ is first countable, but not second countable.

2. Let $Y = {}_{x \ge [0,1]} \mathbb{R}$ (that is $Y = \mathbb{R}^{[0,1]}$). Consider the product topology on Y. Consider the subset E of Y that consists of all functions f (that takions

3. Let (X_{i-X}) and (Y_{i-Y}) be topological spaces and let be the product topology on X = Y. Show that if X and Y are compact spaces then the product $(X = Y_{i-1})$ is compact too.

4. Let (X;) be a separable normal topological space and let A induced topology on A is discrete then A is at most countable.

 \boldsymbol{X} be closed. Show that if the

5. Let $f \ge C([0; 1]; \mathbb{R})$ be such that

$$\int_{0}^{2} f(x) x^{2n} dx = 0$$

for all $n \ge N$ [f 0 g. Show that f(x) = 0 for all $x \ge [0, 1]$.

[Hint: Show that f can be approximated by polynomials of the form $P_n(x^2)$ (so only even powers are used). Then consider $\int_{0}^{R_1} (f(x) - P_n(x^2))^2 dx$.]