Department of Mathematical Sciences Carnegie Mellon University

Basic Examination Measure and Integration January 2011

Time allowed: 120 minutes. Do four of the ⁻ve problems. Indicate on the ⁻rst page which problems you have chosen to be graded. All problems carry the same weight.

- 1. State and prove Lebesgue's monotone convergence theorem.
- 2. Let $(X; M; ^{1})$ be a -nite measure space and let f_{n} , $f : X \neq \mathbb{R}$ be measurable functions such that $ff_{n}g$ converges to f in measure. Prove that if 1 is -nite and $g : \mathbb{R} \neq \mathbb{R}$ is a continuous function, then $fg \pm f_{n}g$ converges to $g \pm f$ in measure.
- 3. Let (X;M; 1) be a measure space, let $1 and let <math>f;g \ge L^p(X)$. Prove that the function Z

$$h(t) := \int_X jf + tg j^p d^{\dagger}; \quad t \ge \mathbb{R};$$

is di[®]erentiable at t = 0 and \neg nd $h^{\ell}(0)$. What happens for p = 1?

- 4. Let $^{o}: B(0; 1) ! [0; 1]$ be a measure inite on compact sets and let 1 be the Lebesgue measure restricted to B(0; 1). Assume that $^{o} : \frac{1}{2}$, that $^{o}(B) = ^{o}(aB)$ for every Borel set $B \frac{1}{2}(0; 1)$ and for every a > 0, and that $\frac{d^{o}}{d^{1}}$ is a continuous function. Prove that $\frac{d^{o}}{d^{1}}(x) = \frac{c}{x}$ for some constant c = 0 and all x > 0.
- 5. Let ${}^{1}: B^{\dagger} \mathbb{R}^{N^{\complement}} / [0; 1]$ be a measure nite on compact sets, let $1 \cdot p < 1$ and let $f: \mathbb{R}^{N} / \mathbb{R}$ be such that $[f] 2 L^{p^{\dagger}} \mathbb{R}^{N^{\complement}}$. Prove that there exists a Borel set $E \frac{1}{2} \mathbb{R}^{N}$, with ${}^{1}(E) = 0$, such that for every $x 2 \mathbb{R}^{N} n E$,

$$\lim_{r \neq 0^+} \frac{3}{1 B(x;r)} \int_{\overline{B(x;r)}}^{L} f(y) f(x) f(x) f(x) = 0.$$