


4. Let (X;M) be a measurable space and let ff,g, be a sequence of mea-
surable functions f, : X ¥ [0; 1) such that for every " > 0 there exist
t->0and E- 2 M with (E~) < 1L such that
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for all n 2 N. Is the inequality
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true? Prove or give a counter example.

5. Let a x
e e
f(xX) ” ;7 x>0
. . . R a1
(i) Prove thatRf is Lebesgue integrable and compute = f(x) dx.
(ii) Compute 01 % dt.



