Department of Mathematical Sciences Carnegie Mellon University

Basic Examination Probability Spring 2015

Time allowed: 120 minutes.

1. Let (Y_n) be IID RVs taking values 1 and -1 with equal probabilities. Compute the function

$$f(\mathbf{x}) = \Pr[\bigwedge_{n}^{\wedge} x_{n} Y_{n} \text{ converges}]$$

de ned on sequences $\mathbf{x} = (x_n)$ of real numbers.

- 2. Let (X_n) be independent RVs. Establish the relationships between the following (a) $\underset{n}{P}^{n} X_{n}$ converges in distribution; (b) $\underset{n}{P}^{n} X_{n}$ converges in probability; (c) $\underset{n}{P}^{n} X_{n}$ converges almost statements:
- 3. Let X_0 ; X_1 ; \ldots ; X_n be random variables having a joint normal distribution. Assume that $E[X_i] = 0$ and denote $i_i = E[X_iX_i]$. Compute $E[X_0|X_1, \dots, X_n]$.
- 4. Let (X_n) be IID RVs with zero mean, $S_n = \bigcap_{k=1}^n X_k$, and

$$= \inf\{n: S_n > 0\}$$
:

Will have a nite rst moment?

5. Let (X_p) be a random walk on integers starting at 0 with the probability p to go up and the probability q to go down; p > q. For an integer a > 0 de ne the hitting time

$$= \min\{n \ge 0 : X_n = a\}$$
:

Compute $E[^{2}]$.