Department of Mathematical Sciences Carnegie Mellon University

Basic Examination Probability Spring 2018

Time allowed: 180 minutes.

- 1. Recite precisely the following de nitions/facts/theorems/lemmas:
 - (a) Tail -algebra. Kolmogorov's 0 1 law.
 - (b) Kolmogorov's three-series theorem on convergence of sums of IRVs.
 - (c) Doob's maximal L_p inequalities for martingales.
 - (d) Method of characteristic functions in weak convergence.
- 2. Let (X_n) be IID RVs with uniform distribution on [0, 1]. For each of the items below describe all sequence of real numbers (a_n) such that $a_n X_n$ converges (i) almost surely, (ii) weakly, (iii) in L_1 , (iv) in L_2 .
- 3. Let (*M_n*

- 6. Let (X_n) be sequence of RVs such that $X_n \neq X$ (a.s) and $jX_n j \neq 2 L_1$. Let (F_n) be a Itration. Show that $E(X_n j F_n) \neq E(X j F_1)$ (a.s) and in L_1 .
- 7. Let (X_n) be a random walk on integers starting at 0 with the probability 0to go up and the probability