Department of Mathematical Sciences Carnegie Mellon University

Basic Examination Probability Fall 2018

Time allowed: 180 minutes. Justify your answers.

- 1. Recite precisely the following de nitions/facts/theorems/lemmas:
 - (a) Dynkin's lemma on -systems.
 - (b) First and second Borel-Cantelli lemmas.
 - (c) Kolmogorov's three-series theorem on convergence of sums of IRVs.
 - (d) Let (X_n) be a non-negative submartingale. Will it converge (i) almost surely,
 (ii) in probability, (iii) in L₁, (iv) weakly to some random variable X₁? If needed, formulate additional (as sharp as possible) conditions on (X_n) under which these convergences take place.
- 2. Let $X_{\mathbb{D}}$:::: X_N be IID Gaussian RVs with mean 0 and variance 1 and denote $S_N = \int_{1}^{1} \int_{0}^{1} X_n$ and $Y = I(S_N > 0)$. Compute the function f = f(x) such that

$$f(Y) = \mathbb{E}(X_1 j Y):$$

3. Let (X_n) be IID bounded (non-constant) BVs and suppose that a sequence of real numbers (a_n) is chosen so that the series $a_n X_n$ converges almost surely.

(a) Will the series
$$\Pr_n a_n X_n$$
 converge in L_1 ?

- (b) Is it true that $\Pr_n ja_n j < 1$?.
- 4. Let (X_n) be a martingale bounded in L_2 and (G_n) be the Itration generated by the absolute values of (X_n) :

$$G_n = (jX_1j; jX_2j; \dots; jX_nj); \quad n = 1:$$

Will the sequence $Y_n = E(X_n j G_n)$, n = 1, converge (a) a.s.? (b) in L_2 ?

5. Let (X_n) be IID RVs with uniform distribution on (-1, 1). Denote

$$S_n = X_1 + \dots + X_n$$
; $S_0 = 0$:

Show that there is a constant a > 0 such that

$$\limsup_{n} P \max_{k} S_{k} c^{D}\overline{n} e^{-ac^{2}}; \quad 8c > 0:$$

Write your best possible estimate for *a*.

6. Let (X_n) be IID RVs with the distribution function

$$P(X_1 \quad x) = \frac{1}{2} \int_{-\pi}^{2\pi} \frac{dy}{1+y^2}; \quad x \ge R;$$

There are a constant p > 0 and a random variable $Y \neq 0$ such that the sequence

$$Y_n$$
, $\frac{1}{n^p} \sum_{1=k=n}^{k} X_k$; $n = 1;$

converges weakly to Y. Compute p and the distribution function of Y.

7. Let (X_n) be a symmetric random walk on integers starting at 0. For an integer a > 0 de ne the hitting time

$$= \inf fn \quad 0: X_n = ag:$$

Compute the Laplace transform L() = E e, 0 and the mean E().

8. Let (X_n) be IID non-negative RVs, each having density = (x) with respect to the Lebesgue measure and expectation

$$E(X_1) = \int_{0}^{Z_1} x(x) dx = 1$$

Let $Y_0 = 1$ and $Y_n = \frac{\bigcirc_n}{_{k=1}} X_{k}$, n = 1.

(a) Obtain a (deterministic) integral equation, which solution yields

$$a() = P \max_{n = 0} Y_n 2 :$$

(b) Write your best estimate for $a = \sup a()$.