Department of Mathematical Sciences Carnegie Mellon University

Basic Examination Probability Spring 2020

Time allowed: 180 minutes.

- 1. Recite precisely the following de nitions/facts/theorems/lemmas:
 - (a) Give the de nitions of the following convergences: (i) almost surely, (ii) in probability, (iii) in L_1 , (iv) weak (= in distribution). Specify all relations between these convergences.
 - (b) Let (X_n) be a nonnegative submartingale. Will it converge (i) almost surely,
 (ii) in probability, (iii) in L₁, (iv) weakly to some (nite) random variable X₁? If needed, formulate additional (as sharp as possible) conditions on (X_n) that yield these convergences.
 - (c) Kolmogorov's three-series theorem on convergence of sums of IRVs.
 - (d) Doob's maximal \angle inequalities, p > 1.
 - (e) Theorem on equivalence between weak convergence and convergence of characteristic functions.
- 2. Let (X_n) be IID Gaussian RVs with mean 0 and variance 1 and h = h(t) be some strictly increasing function on (0, 7). Obtain conditions on h = (h(t)) so that

$$\limsup_{n! \to 1} \frac{X_n}{h(n)} = 1; \quad (a:s:):$$

3. Let (M_n) be a strictly positive UI martingale in the form:

$$M_n = \bigvee_{k=1}^n X_k; \quad M_0 = 1;$$

where (X_n) are IRVs. Find all p > 0 such that $E(\max_n M_n) < 1$.

- 4. Let (X_n) be bounded IID RVs with mean $= E(X_1) \notin 0$ and variance $^2 = E((X_1)^2) > 0$. Obtain necessary and su cient conditions on the sequence of real numbers (a_n) that are equivalent to the weak convergence of $a_n X_n$.
- 5. Let (X_n) be Exp IID RVs, that is, their density function has the form:

$$f(t) = e ; t = 0$$
:

Let $S_n = X_1 + \dots + X_n$ and $Y_n = \mathbb{E} X_n / S_n > \frac{n}{2}$ be the conditional expectation of X_n given the event $S_n > \frac{n}{2}$. Will the sequence (Y_n) converge? It yes, then compute the limit.

6. Let (X_n) be non-negative IID RVs. Suppose that

$$\frac{X_1 + \dots + X_n}{n} / < 1; \quad n / 1; \quad (a:s:):$$

Can we assert that $E(X_1) = ?$

Remark. Be careful. We are not given that $E(X_1) < 1$.

7. Let $(X_{n,m})$ be IID random variables with values in non-negative integers such that

 $= \mathbb{E}[X_{1,1}] > 1$ and $^{2} = \mathbb{E}[(X_{1,1})^{2}] < 1$:

De ne random variables (Z_n) , recursively, as

$$Z_0 = 1;$$

 $Z_{n+1} = \sum_{m=1}^{N} X_{n+1,m};$

Show that

$$M_n = \frac{Z_n}{n} / M_1 \text{ in } L_2$$

and compute the rst and second moments of M_{1} .

8. Let (X_n) be a symmetric random walk on integers with $X_0 = 0$. Let $a \ge Z_+$. Among all stopping times with $E[] = a^2$, nd the one that maximizes $E(jX_{\tau}j)$.