Sample Basic Qualifying Exam - Section Probability

Time: 2 hrs

- 1. Recite precisely the following de nitions/facts/theorems/lemmas:
 - (a) If A_k is a sequence of elds then the asymptotic eld is de ned as ...
 - (b) Etemadi's strong law of large numbers
 - (c) Lindebergh's CLT
 - (d) Upcrossing inequality
 - (e) Give three equivalent characterizations of uniform integrabilty
 - (f) Cramer's Theorem (large deviations)
- 2. Give the statement and proof of **ONE** of the following theorems:
 - (a) optional stopping thm for martingales with a.s. nite stopping times
 - (b) classical CLT

Solve **TWO** out of the three following problems:

- 3. The distribution with distribution function $F(x) = e^{-e^{-x}}$ is one example of the so-called extremal distributions.
 - (a) Verify that F is indeed a distribution function.
 - (b) Let M_n be the running maximum of i.i.d. exponential variables with parameter = 1 i.e., $M_n := \max(X_1; X_2; ...; X_n)$ and 8x = 0; $P = X_k > x = e^{-x}$. Show rst $\overline{\lim}_{n!=1} (X_n = \log(n)) = 1$ a.s. and then $\lim_{n!=1} M_n = \log(n) = 1$ a.s.
 - (c) In fact it can be seen that M_n is concentrated around $\log(n)$. Prove that in particular $M_n = \log(n)$ converges weakly to as n! = 1. Hint: Don't use Fourier transforms.
- 4. Let T:S be stoppintg times w.r.t. a Itration $(F_k)_{k=0}$.
 - (a) What is the relation between (T) and F_T ? Explain.
 - (b) Consider a random walk on the integers starting at 0. Let T be the hitting time of [10; 1) and S be the hitting time of [5; 1). Is the event $fS = 15g F_T$ -measurable? (prove or disprove)
 - (c) Show that $T \subseteq S$, the maximum of T and S, is a stopping time. Identify $F_{T \subseteq S}$ in terms of F_S and F_T . (After guessing, prove that your guess is correct.)
- 5. Let $X_1; X_2; ...$ be independent RVs and $S_n = X_1 + ... + X_n$. Suppose $P[X_k = 1] = P[X_k = 1] = (1 1 + k^2) = 2$ and $P[X_k = k] = P[X_k = k] = (1 + k^2) = 2$.
 - (a) Determine the asymptotics of the variance of S_n .
 - (b) Based on this asymptotics conjecture (state but don't prove) a CLT for S_n .
 - (c) Check whether the Lindeberg-Feller condition is satis ed.
 - (d) Prove nally an appropriate CLT. Hint: Set $Y_k = \text{sign}(X_k)$ and note that $\bigcap_k P[X_k \in Y_k] < 1$. Then use Borel Cantelli. Recall that if Z_n Y Z and C_n Y 0 a.s., then $(Z_n + C_n)$ Y Z.