
Grasshopping Robots Made Possible with New, Improved Latch Control
Media Inquiries
It鈥檚 no problem for animals and insects to jump across grass and sand.听鈥檚 team of researchers at 一本道无码 found they didn鈥檛 have to look far to enable robots to take the same leap.听
鈥淚 am interested in how we can build these very functional, very small robots that can move around diverse environments,鈥 said Bergbreiter, a professor of . 鈥淭raditionally, jumping robots are studied on rigid surfaces, so designing a jumper that can function efficiently on soft substrates is a big step for robotics.鈥
Bergreiter鈥檚 team used a mathematical model to illustrate how the latch mechanism 鈥 once thought of as merely an 鈥渙n鈥 or 鈥渙ff鈥 switch to release stored energy 鈥 plays a role in the system鈥檚 ability to adapt its jump performance before testing their findings on a robot 鈥渏umper.鈥 The latch can be used to control jump performance across a wide range of terrains.听
鈥淲e found that the latch can not only mediate energy output, but can also mediate energy transfer between the jumper and the environment that it is jumping from.鈥 Bergbreiter explained. 鈥淲hen using a round latch, we can delay the jump and allow the robot to take advantage of the substrate鈥檚 recoil.鈥
The team tested their jumper on a tree branch and watched as the branch recoiled before the jumper took off. This proved that the jumper recovered some of the energy initially lost to the tree branch.
Unexpectedly, Bergbreiter鈥檚 team found that a sharp (zero radius) latch sometimes outperformed their rounded latch, contrary to model predictions. In these instances, the tree branch collided with the robot after take-off, causing an unconventional form of energy recovery from the substrate bump. The bump gave the jumper additional energy enabling it to outperform the well-controlled rounded latch jumper.
鈥淣ow that we understand the natural design space, we can build something that takes advantage of the compliance of these soft substrates,鈥 Berbreiter said.听
Biologists are equally motivated to understand this space in order to discern how biological organisms, like grasshoppers, are able to control their energy output when jumping through grass.
"It鈥檚 really fascinating that the latch 鈥 something that we already need in our robots 鈥 can be used to control outputs that we couldn鈥檛 have controlled before." 鈥 Sarah Bergbreiter
鈥淚t has been nearly impossible to design controlled insect-sized robots because they are launched in just milliseconds. Now, we have more control over whether our robots are jumping up one foot or three. Or we can simply make it jump consistently despite wide variation in substrate. It's really fascinating that the latch 鈥 something that we already need in our robots 鈥 can be used to control outputs that we couldn鈥檛 have controlled before.鈥澨
This research was in collaboration with researchers at Dickinson College and University of California, Irvine.